110 lines
3.1 KiB
Objective-C
110 lines
3.1 KiB
Objective-C
//
|
|
// This file is auto-generated. Please don't modify it!
|
|
//
|
|
#pragma once
|
|
|
|
#ifdef __cplusplus
|
|
//#import "opencv.hpp"
|
|
#import "opencv2/dnn.hpp"
|
|
#import "opencv2/dnn/dnn.hpp"
|
|
#else
|
|
#define CV_EXPORTS
|
|
#endif
|
|
|
|
#import <Foundation/Foundation.h>
|
|
#import "Model.h"
|
|
|
|
@class FloatVector;
|
|
@class Mat;
|
|
@class Point2i;
|
|
@class RotatedRect;
|
|
|
|
|
|
|
|
NS_ASSUME_NONNULL_BEGIN
|
|
|
|
// C++: class TextDetectionModel
|
|
/**
|
|
* Base class for text detection networks
|
|
*
|
|
* Member of `Dnn`
|
|
*/
|
|
CV_EXPORTS @interface TextDetectionModel : Model
|
|
|
|
|
|
#ifdef __cplusplus
|
|
@property(readonly)cv::Ptr<cv::dnn::TextDetectionModel> nativePtrTextDetectionModel;
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
- (instancetype)initWithNativePtr:(cv::Ptr<cv::dnn::TextDetectionModel>)nativePtr;
|
|
+ (instancetype)fromNative:(cv::Ptr<cv::dnn::TextDetectionModel>)nativePtr;
|
|
#endif
|
|
|
|
|
|
#pragma mark - Methods
|
|
|
|
|
|
//
|
|
// void cv::dnn::TextDetectionModel::detect(Mat frame, vector_vector_Point& detections, vector_float& confidences)
|
|
//
|
|
/**
|
|
* Performs detection
|
|
*
|
|
* Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections.
|
|
*
|
|
* Each result is quadrangle's 4 points in this order:
|
|
* - bottom-left
|
|
* - top-left
|
|
* - top-right
|
|
* - bottom-right
|
|
*
|
|
* Use cv::getPerspectiveTransform function to retrieve image region without perspective transformations.
|
|
*
|
|
* NOTE: If DL model doesn't support that kind of output then result may be derived from detectTextRectangles() output.
|
|
*
|
|
* @param frame The input image
|
|
* @param detections array with detections' quadrangles (4 points per result)
|
|
* @param confidences array with detection confidences
|
|
*/
|
|
- (void)detect:(Mat*)frame detections:(NSMutableArray<NSMutableArray<Point2i*>*>*)detections confidences:(FloatVector*)confidences NS_SWIFT_NAME(detect(frame:detections:confidences:));
|
|
|
|
|
|
//
|
|
// void cv::dnn::TextDetectionModel::detect(Mat frame, vector_vector_Point& detections)
|
|
//
|
|
- (void)detect:(Mat*)frame detections:(NSMutableArray<NSMutableArray<Point2i*>*>*)detections NS_SWIFT_NAME(detect(frame:detections:));
|
|
|
|
|
|
//
|
|
// void cv::dnn::TextDetectionModel::detectTextRectangles(Mat frame, vector_RotatedRect& detections, vector_float& confidences)
|
|
//
|
|
/**
|
|
* Performs detection
|
|
*
|
|
* Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections.
|
|
*
|
|
* Each result is rotated rectangle.
|
|
*
|
|
* NOTE: Result may be inaccurate in case of strong perspective transformations.
|
|
*
|
|
* @param frame the input image
|
|
* @param detections array with detections' RotationRect results
|
|
* @param confidences array with detection confidences
|
|
*/
|
|
- (void)detectTextRectangles:(Mat*)frame detections:(NSMutableArray<RotatedRect*>*)detections confidences:(FloatVector*)confidences NS_SWIFT_NAME(detectTextRectangles(frame:detections:confidences:));
|
|
|
|
|
|
//
|
|
// void cv::dnn::TextDetectionModel::detectTextRectangles(Mat frame, vector_RotatedRect& detections)
|
|
//
|
|
- (void)detectTextRectangles:(Mat*)frame detections:(NSMutableArray<RotatedRect*>*)detections NS_SWIFT_NAME(detectTextRectangles(frame:detections:));
|
|
|
|
|
|
|
|
@end
|
|
|
|
NS_ASSUME_NONNULL_END
|
|
|
|
|