203 lines
7.0 KiB
C#
203 lines
7.0 KiB
C#
#if !UNITY_WSA_10_0
|
|
|
|
using OpenCVForUnity.CoreModule;
|
|
using OpenCVForUnity.DnnModule;
|
|
using OpenCVForUnity.ImgprocModule;
|
|
using OpenCVForUnity.ObjdetectModule;
|
|
using System;
|
|
using System.Text;
|
|
using UnityEngine;
|
|
|
|
namespace OpenCVForUnityExample.DnnModel
|
|
{
|
|
/// <summary>
|
|
/// Referring to https://github.com/opencv/opencv_zoo/tree/main/models/face_detection_yunet
|
|
/// </summary>
|
|
public class YuNetV2FaceDetector
|
|
{
|
|
Size input_size;
|
|
float conf_threshold;
|
|
float nms_threshold;
|
|
int topK;
|
|
int backend;
|
|
int target;
|
|
|
|
protected Scalar bBoxColor = new Scalar(0, 255, 0, 255);
|
|
|
|
protected Scalar[] keyPointsColors = new Scalar[] {
|
|
new Scalar(0, 0, 255, 255), // # right eye
|
|
new Scalar(255, 0, 0, 255), // # left eye
|
|
new Scalar(255, 255, 0, 255), // # nose tip
|
|
new Scalar(0, 255, 255, 255), // # mouth right
|
|
new Scalar(0, 255, 0, 255), // # mouth left
|
|
new Scalar(255, 255, 255, 255) };
|
|
|
|
FaceDetectorYN detection_model;
|
|
|
|
Mat input_sizeMat;
|
|
|
|
public YuNetV2FaceDetector(string modelFilepath, string configFilepath, Size inputSize, float confThreshold = 0.6f, float nmsThreshold = 0.3f, int topK = 5000, int backend = Dnn.DNN_BACKEND_OPENCV, int target = Dnn.DNN_TARGET_CPU)
|
|
{
|
|
// initialize
|
|
if (!string.IsNullOrEmpty(modelFilepath))
|
|
{
|
|
detection_model = FaceDetectorYN.create(modelFilepath, configFilepath, inputSize, confThreshold, nmsThreshold, topK, backend, target);
|
|
}
|
|
|
|
input_size = new Size(inputSize.width > 0 ? inputSize.width : 320, inputSize.height > 0 ? inputSize.height : 320);
|
|
conf_threshold = Mathf.Clamp01(confThreshold);
|
|
nms_threshold = Mathf.Clamp01(nmsThreshold);
|
|
this.topK = topK;
|
|
this.backend = backend;
|
|
this.target = target;
|
|
}
|
|
|
|
protected virtual Mat preprocess(Mat image)
|
|
{
|
|
int h = (int)input_size.height;
|
|
int w = (int)input_size.width;
|
|
|
|
if (input_sizeMat == null)
|
|
input_sizeMat = new Mat(new Size(w, h), CvType.CV_8UC3);// [h, w]
|
|
|
|
Imgproc.resize(image, input_sizeMat, new Size(w, h));
|
|
|
|
return input_sizeMat;// [h, w, 3]
|
|
}
|
|
|
|
public virtual Mat infer(Mat image)
|
|
{
|
|
// cheack
|
|
if (image.channels() != 3)
|
|
{
|
|
Debug.Log("The input image must be in BGR format.");
|
|
return new Mat();
|
|
}
|
|
|
|
// Preprocess
|
|
Mat input_blob = preprocess(image);
|
|
|
|
// Forward
|
|
Mat results = new Mat();
|
|
detection_model.detect(input_blob, results);
|
|
|
|
// Postprocess
|
|
// scale_boxes
|
|
float x_factor = image.width() / (float)input_size.width;
|
|
float y_factor = image.height() / (float)input_size.height;
|
|
|
|
for (int i = 0; i < results.rows(); ++i)
|
|
{
|
|
float[] results_arr = new float[14];
|
|
results.get(i, 0, results_arr);
|
|
for (int j = 0; j < 14; ++j)
|
|
{
|
|
if (j % 2 == 0)
|
|
{
|
|
results_arr[j] = results_arr[j] * x_factor;
|
|
}
|
|
else
|
|
{
|
|
results_arr[j] = results_arr[j] * y_factor;
|
|
}
|
|
}
|
|
|
|
results.put(i, 0, results_arr);
|
|
}
|
|
|
|
return results;
|
|
}
|
|
|
|
protected virtual Mat postprocess(Mat output_blob)
|
|
{
|
|
return output_blob;
|
|
}
|
|
|
|
public virtual void visualize(Mat image, Mat results, bool print_results = false, bool isRGB = false)
|
|
{
|
|
if (image.IsDisposed)
|
|
return;
|
|
|
|
if (results.empty() || results.cols() < 15)
|
|
return;
|
|
|
|
for (int i = results.rows() - 1; i >= 0; --i)
|
|
{
|
|
float[] box = new float[4];
|
|
results.get(i, 0, box);
|
|
float[] conf = new float[1];
|
|
results.get(i, 14, conf);
|
|
float[] landmarks = new float[10];
|
|
results.get(i, 4, landmarks);
|
|
|
|
float left = box[0];
|
|
float top = box[1];
|
|
float right = box[0] + box[2];
|
|
float bottom = box[1] + box[3];
|
|
|
|
Scalar bbc = bBoxColor;
|
|
Scalar bbcolor = isRGB ? bbc : new Scalar(bbc.val[2], bbc.val[1], bbc.val[0], bbc.val[3]);
|
|
|
|
Imgproc.rectangle(image, new Point(left, top), new Point(right, bottom), bbcolor, 2);
|
|
|
|
string label = String.Format("{0:0.0000}", conf[0]);
|
|
int[] baseLine = new int[1];
|
|
Size labelSize = Imgproc.getTextSize(label, Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, 1, baseLine);
|
|
|
|
top = Mathf.Max((float)top, (float)labelSize.height);
|
|
Imgproc.rectangle(image, new Point(left, top - labelSize.height),
|
|
new Point(left + labelSize.width, top + baseLine[0]), bbcolor, Core.FILLED);
|
|
Imgproc.putText(image, label, new Point(left, top), Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, new Scalar(0, 0, 0, 255), 1, Imgproc.LINE_AA);
|
|
|
|
// draw landmark points
|
|
for (int j = 0; j < 10; j += 2)
|
|
{
|
|
Scalar c = keyPointsColors[(j / 2) % keyPointsColors.Length];
|
|
Scalar color = isRGB ? c : new Scalar(c.val[2], c.val[1], c.val[0], c.val[3]);
|
|
|
|
Imgproc.circle(image, new Point(landmarks[j], landmarks[j + 1]), 2, color, 2);
|
|
}
|
|
}
|
|
|
|
// Print results
|
|
if (print_results)
|
|
{
|
|
StringBuilder sb = new StringBuilder();
|
|
|
|
for (int i = 0; i < results.rows(); ++i)
|
|
{
|
|
float[] box = new float[4];
|
|
results.get(i, 0, box);
|
|
float[] conf = new float[1];
|
|
results.get(i, 14, conf);
|
|
float[] landmarks = new float[10];
|
|
results.get(i, 4, landmarks);
|
|
|
|
sb.AppendLine(String.Format("-----------face {0}-----------", i + 1));
|
|
sb.AppendLine(String.Format("conf: {0:0.0000}", conf[0]));
|
|
sb.AppendLine(String.Format("box: {0:0} {1:0} {2:0} {3:0}", box[0], box[1], box[2], box[3]));
|
|
sb.Append("landmarks: ");
|
|
foreach (var p in landmarks)
|
|
{
|
|
sb.Append(String.Format("{0:0} ", p));
|
|
}
|
|
sb.AppendLine();
|
|
}
|
|
|
|
Debug.Log(sb);
|
|
}
|
|
}
|
|
|
|
public virtual void dispose()
|
|
{
|
|
if (detection_model != null)
|
|
detection_model.Dispose();
|
|
|
|
if (input_sizeMat != null)
|
|
input_sizeMat.Dispose();
|
|
|
|
input_sizeMat = null;
|
|
}
|
|
}
|
|
}
|
|
#endif |