Health/Assets/Scripts/PoseCheck/YOLOv7ObjectDetector.cs

287 lines
10 KiB
C#

using OpenCVForUnity.CoreModule;
using OpenCVForUnity.DnnModule;
using OpenCVForUnity.ImgprocModule;
using System.Collections.Generic;
using System.Text;
using System;
using UnityEngine;
namespace Yoga
{
public class YOLOv7ObjectDetector
{
Size input_size;
float conf_threshold;
float nms_threshold;
int topK;
int backend;
int target;
int num_classes = 80;
DetectionModel detection_model;
public readonly List<string> classNames;
public readonly List<Scalar> palette;
Mat maxSizeImg;
MatOfInt classIds;
MatOfFloat confidences;
MatOfRect boxes;
public YOLOv7ObjectDetector(string modelFilepath, string configFilepath, string classesFilepath, Size inputSize, float confThreshold = 0.25f, float nmsThreshold = 0.45f, int topK = 1000, int backend = Dnn.DNN_BACKEND_OPENCV, int target = Dnn.DNN_TARGET_CPU)
{
// initialize
if (!string.IsNullOrEmpty(modelFilepath))
{
detection_model = new DetectionModel(modelFilepath, configFilepath);
detection_model.setInputParams(1.0 / 255.0, inputSize, new Scalar(0, 0, 0), true, false);
detection_model.setNmsAcrossClasses(false);// Perform classwise NMS.
detection_model.setPreferableBackend(this.backend);
detection_model.setPreferableTarget(this.target);
}
if (!string.IsNullOrEmpty(classesFilepath))
{
classNames = readClassNames(classesFilepath);
num_classes = classNames.Count;
}
input_size = new Size(inputSize.width > 0 ? inputSize.width : 640, inputSize.height > 0 ? inputSize.height : 640);
conf_threshold = Mathf.Clamp01(confThreshold);
nms_threshold = Mathf.Clamp01(nmsThreshold);
this.topK = topK;
this.backend = backend;
this.target = target;
classIds = new MatOfInt();
confidences = new MatOfFloat();
boxes = new MatOfRect();
palette = new List<Scalar>();
palette.Add(new Scalar(255, 56, 56, 255));
palette.Add(new Scalar(255, 157, 151, 255));
palette.Add(new Scalar(255, 112, 31, 255));
palette.Add(new Scalar(255, 178, 29, 255));
palette.Add(new Scalar(207, 210, 49, 255));
palette.Add(new Scalar(72, 249, 10, 255));
palette.Add(new Scalar(146, 204, 23, 255));
palette.Add(new Scalar(61, 219, 134, 255));
palette.Add(new Scalar(26, 147, 52, 255));
palette.Add(new Scalar(0, 212, 187, 255));
palette.Add(new Scalar(44, 153, 168, 255));
palette.Add(new Scalar(0, 194, 255, 255));
palette.Add(new Scalar(52, 69, 147, 255));
palette.Add(new Scalar(100, 115, 255, 255));
palette.Add(new Scalar(0, 24, 236, 255));
palette.Add(new Scalar(132, 56, 255, 255));
palette.Add(new Scalar(82, 0, 133, 255));
palette.Add(new Scalar(203, 56, 255, 255));
palette.Add(new Scalar(255, 149, 200, 255));
palette.Add(new Scalar(255, 55, 199, 255));
}
protected virtual Mat preprocess(Mat image)
{
// Add padding to make it square.
int max = Mathf.Max(image.cols(), image.rows());
if (maxSizeImg == null)
maxSizeImg = new Mat(max, max, image.type(), Scalar.all(114));
if (maxSizeImg.width() != max || maxSizeImg.height() != max)
{
maxSizeImg.create(max, max, image.type());
Imgproc.rectangle(maxSizeImg, new OpenCVForUnity.CoreModule.Rect(0, 0, maxSizeImg.width(), maxSizeImg.height()), Scalar.all(114), -1);
}
Mat _maxSizeImg_roi = new Mat(maxSizeImg, new OpenCVForUnity.CoreModule.Rect((max - image.cols()) / 2, (max - image.rows()) / 2, image.cols(), image.rows()));
image.copyTo(_maxSizeImg_roi);
return maxSizeImg;// [max, max, 3]
}
public virtual Mat infer(Mat image)
{
// cheack
if (image.channels() != 3)
{
Debug.Log("The input image must be in BGR format.");
return new Mat();
}
// Preprocess
Mat input_blob = preprocess(image);
// Forward
detection_model.detect(input_blob, classIds, confidences, boxes, conf_threshold, nms_threshold);
// Postprocess
int num = classIds.rows();
Mat results = new Mat(num, 6, CvType.CV_32FC1);
float maxSize = Mathf.Max((float)image.size().width, (float)image.size().height);
float x_shift = (maxSize - (float)image.size().width) / 2f;
float y_shift = (maxSize - (float)image.size().height) / 2f;
for (int i = 0; i < num; ++i)
{
int[] classId_arr = new int[1];
classIds.get(i, 0, classId_arr);
int id = classId_arr[0];
float[] confidence_arr = new float[1];
confidences.get(i, 0, confidence_arr);
float confidence = confidence_arr[0];
int[] box_arr = new int[4];
boxes.get(i, 0, box_arr);
int x = box_arr[0] - (int)x_shift;
int y = box_arr[1] - (int)y_shift;
int w = box_arr[2];
int h = box_arr[3];
results.put(i, 0, new float[] { x, y, x + w, y + h, confidence, id });
}
return results;
}
protected virtual Mat postprocess(Mat output_blob, Size original_shape)
{
return output_blob;
}
public virtual void visualize(Mat image, Mat results, bool print_results = false, bool isRGB = false)
{
if (image.IsDisposed)
return;
if (results.empty() || results.cols() < 6)
return;
for (int i = results.rows() - 1; i >= 0; --i)
{
float[] box = new float[4];
results.get(i, 0, box);
float[] conf = new float[1];
results.get(i, 4, conf);
float[] cls = new float[1];
results.get(i, 5, cls);
float left = box[0];
float top = box[1];
float right = box[2];
float bottom = box[3];
int classId = (int)cls[0];
Scalar c = palette[classId % palette.Count];
Scalar color = isRGB ? c : new Scalar(c.val[2], c.val[1], c.val[0], c.val[3]);
Imgproc.rectangle(image, new Point(left, top), new Point(right, bottom), color, 2);
string label = String.Format("{0:0.00}", conf[0]);
if (classNames != null && classNames.Count != 0)
{
if (classId < (int)classNames.Count)
{
label = classNames[classId] + " " + label;
}
}
int[] baseLine = new int[1];
Size labelSize = Imgproc.getTextSize(label, Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, 1, baseLine);
top = Mathf.Max((float)top, (float)labelSize.height);
Imgproc.rectangle(image, new Point(left, top - labelSize.height),
new Point(left + labelSize.width, top + baseLine[0]), color, Core.FILLED);
Imgproc.putText(image, label, new Point(left, top), Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, Scalar.all(255), 1, Imgproc.LINE_AA);
}
// Print results
if (print_results)
{
StringBuilder sb = new StringBuilder();
for (int i = 0; i < results.rows(); ++i)
{
float[] box = new float[4];
results.get(i, 0, box);
float[] conf = new float[1];
results.get(i, 4, conf);
float[] cls = new float[1];
results.get(i, 5, cls);
int classId = (int)cls[0];
string label = String.Format("{0:0.0000}", conf[0]);
if (classNames != null && classNames.Count != 0)
{
if (classId < (int)classNames.Count)
{
label = classNames[classId] + " " + label;
}
}
sb.AppendLine(String.Format("-----------object {0}-----------", i + 1));
sb.AppendLine(String.Format("conf: {0:0.0000}", conf[0]));
sb.AppendLine(String.Format("cls: {0:0}", label));
sb.AppendLine(String.Format("box: {0:0} {1:0} {2:0} {3:0}", box[0], box[1], box[2], box[3]));
}
Debug.Log(sb);
}
}
public virtual void dispose()
{
if (detection_model != null)
detection_model.Dispose();
if (maxSizeImg != null)
maxSizeImg.Dispose();
maxSizeImg = null;
if (classIds != null)
classIds.Dispose();
if (confidences != null)
confidences.Dispose();
if (boxes != null)
boxes.Dispose();
classIds = null;
confidences = null;
boxes = null;
}
protected virtual List<string> readClassNames(string filename)
{
List<string> classNames = new List<string>();
System.IO.StreamReader cReader = null;
try
{
cReader = new System.IO.StreamReader(filename, System.Text.Encoding.Default);
while (cReader.Peek() >= 0)
{
string name = cReader.ReadLine();
classNames.Add(name);
}
}
catch (System.Exception ex)
{
Debug.LogError(ex.Message);
return null;
}
finally
{
if (cReader != null)
cReader.Close();
}
return classNames;
}
}
}