Health/Assets/OpenCVForUnity/Plugins/iOS/opencv2.framework/Headers/RTrees.h

183 lines
4.6 KiB
Objective-C

//
// This file is auto-generated. Please don't modify it!
//
#pragma once
#ifdef __cplusplus
//#import "opencv.hpp"
#import "opencv2/ml.hpp"
#else
#define CV_EXPORTS
#endif
#import <Foundation/Foundation.h>
#import "DTrees.h"
@class Mat;
@class TermCriteria;
NS_ASSUME_NONNULL_BEGIN
// C++: class RTrees
/**
* The class implements the random forest predictor.
*
* @see REF: ml_intro_rtrees
*
* Member of `Ml`
*/
CV_EXPORTS @interface RTrees : DTrees
#ifdef __cplusplus
@property(readonly)cv::Ptr<cv::ml::RTrees> nativePtrRTrees;
#endif
#ifdef __cplusplus
- (instancetype)initWithNativePtr:(cv::Ptr<cv::ml::RTrees>)nativePtr;
+ (instancetype)fromNative:(cv::Ptr<cv::ml::RTrees>)nativePtr;
#endif
#pragma mark - Methods
//
// bool cv::ml::RTrees::getCalculateVarImportance()
//
/**
* @see `-setCalculateVarImportance:`
*/
- (BOOL)getCalculateVarImportance NS_SWIFT_NAME(getCalculateVarImportance());
//
// void cv::ml::RTrees::setCalculateVarImportance(bool val)
//
/**
* getCalculateVarImportance @see `-getCalculateVarImportance:`
*/
- (void)setCalculateVarImportance:(BOOL)val NS_SWIFT_NAME(setCalculateVarImportance(val:));
//
// int cv::ml::RTrees::getActiveVarCount()
//
/**
* @see `-setActiveVarCount:`
*/
- (int)getActiveVarCount NS_SWIFT_NAME(getActiveVarCount());
//
// void cv::ml::RTrees::setActiveVarCount(int val)
//
/**
* getActiveVarCount @see `-getActiveVarCount:`
*/
- (void)setActiveVarCount:(int)val NS_SWIFT_NAME(setActiveVarCount(val:));
//
// TermCriteria cv::ml::RTrees::getTermCriteria()
//
/**
* @see `-setTermCriteria:`
*/
- (TermCriteria*)getTermCriteria NS_SWIFT_NAME(getTermCriteria());
//
// void cv::ml::RTrees::setTermCriteria(TermCriteria val)
//
/**
* getTermCriteria @see `-getTermCriteria:`
*/
- (void)setTermCriteria:(TermCriteria*)val NS_SWIFT_NAME(setTermCriteria(val:));
//
// Mat cv::ml::RTrees::getVarImportance()
//
/**
* Returns the variable importance array.
* The method returns the variable importance vector, computed at the training stage when
* CalculateVarImportance is set to true. If this flag was set to false, the empty matrix is
* returned.
*/
- (Mat*)getVarImportance NS_SWIFT_NAME(getVarImportance());
//
// void cv::ml::RTrees::getVotes(Mat samples, Mat& results, int flags)
//
/**
* Returns the result of each individual tree in the forest.
* In case the model is a regression problem, the method will return each of the trees'
* results for each of the sample cases. If the model is a classifier, it will return
* a Mat with samples + 1 rows, where the first row gives the class number and the
* following rows return the votes each class had for each sample.
* @param samples Array containing the samples for which votes will be calculated.
* @param results Array where the result of the calculation will be written.
* @param flags Flags for defining the type of RTrees.
*/
- (void)getVotes:(Mat*)samples results:(Mat*)results flags:(int)flags NS_SWIFT_NAME(getVotes(samples:results:flags:));
//
// double cv::ml::RTrees::getOOBError()
//
/**
* Returns the OOB error value, computed at the training stage when calcOOBError is set to true.
* If this flag was set to false, 0 is returned. The OOB error is also scaled by sample weighting.
*/
- (double)getOOBError NS_SWIFT_NAME(getOOBError());
//
// static Ptr_RTrees cv::ml::RTrees::create()
//
/**
* Creates the empty model.
* Use StatModel::train to train the model, StatModel::train to create and train the model,
* Algorithm::load to load the pre-trained model.
*/
+ (RTrees*)create NS_SWIFT_NAME(create());
//
// static Ptr_RTrees cv::ml::RTrees::load(String filepath, String nodeName = String())
//
/**
* Loads and creates a serialized RTree from a file
*
* Use RTree::save to serialize and store an RTree to disk.
* Load the RTree from this file again, by calling this function with the path to the file.
* Optionally specify the node for the file containing the classifier
*
* @param filepath path to serialized RTree
* @param nodeName name of node containing the classifier
*/
+ (RTrees*)load:(NSString*)filepath nodeName:(NSString*)nodeName NS_SWIFT_NAME(load(filepath:nodeName:));
/**
* Loads and creates a serialized RTree from a file
*
* Use RTree::save to serialize and store an RTree to disk.
* Load the RTree from this file again, by calling this function with the path to the file.
* Optionally specify the node for the file containing the classifier
*
* @param filepath path to serialized RTree
*/
+ (RTrees*)load:(NSString*)filepath NS_SWIFT_NAME(load(filepath:));
@end
NS_ASSUME_NONNULL_END