Health/Assets/OpenCVForUnity/Plugins/iOS/opencv2.framework/Headers/LogisticRegression.h

257 lines
6.5 KiB
Objective-C

//
// This file is auto-generated. Please don't modify it!
//
#pragma once
#ifdef __cplusplus
//#import "opencv.hpp"
#import "opencv2/ml.hpp"
#else
#define CV_EXPORTS
#endif
#import <Foundation/Foundation.h>
#import "StatModel.h"
@class Mat;
@class TermCriteria;
// C++: enum Methods (cv.ml.LogisticRegression.Methods)
typedef NS_ENUM(int, Methods) {
LogisticRegression_BATCH NS_SWIFT_NAME(BATCH) = 0,
LogisticRegression_MINI_BATCH NS_SWIFT_NAME(MINI_BATCH) = 1
};
// C++: enum RegKinds (cv.ml.LogisticRegression.RegKinds)
typedef NS_ENUM(int, RegKinds) {
LogisticRegression_REG_DISABLE NS_SWIFT_NAME(REG_DISABLE) = -1,
LogisticRegression_REG_L1 NS_SWIFT_NAME(REG_L1) = 0,
LogisticRegression_REG_L2 NS_SWIFT_NAME(REG_L2) = 1
};
NS_ASSUME_NONNULL_BEGIN
// C++: class LogisticRegression
/**
* Implements Logistic Regression classifier.
*
* @see REF: ml_intro_lr
*
* Member of `Ml`
*/
CV_EXPORTS @interface LogisticRegression : StatModel
#ifdef __cplusplus
@property(readonly)cv::Ptr<cv::ml::LogisticRegression> nativePtrLogisticRegression;
#endif
#ifdef __cplusplus
- (instancetype)initWithNativePtr:(cv::Ptr<cv::ml::LogisticRegression>)nativePtr;
+ (instancetype)fromNative:(cv::Ptr<cv::ml::LogisticRegression>)nativePtr;
#endif
#pragma mark - Methods
//
// double cv::ml::LogisticRegression::getLearningRate()
//
/**
* @see `-setLearningRate:`
*/
- (double)getLearningRate NS_SWIFT_NAME(getLearningRate());
//
// void cv::ml::LogisticRegression::setLearningRate(double val)
//
/**
* getLearningRate @see `-getLearningRate:`
*/
- (void)setLearningRate:(double)val NS_SWIFT_NAME(setLearningRate(val:));
//
// int cv::ml::LogisticRegression::getIterations()
//
/**
* @see `-setIterations:`
*/
- (int)getIterations NS_SWIFT_NAME(getIterations());
//
// void cv::ml::LogisticRegression::setIterations(int val)
//
/**
* getIterations @see `-getIterations:`
*/
- (void)setIterations:(int)val NS_SWIFT_NAME(setIterations(val:));
//
// int cv::ml::LogisticRegression::getRegularization()
//
/**
* @see `-setRegularization:`
*/
- (int)getRegularization NS_SWIFT_NAME(getRegularization());
//
// void cv::ml::LogisticRegression::setRegularization(int val)
//
/**
* getRegularization @see `-getRegularization:`
*/
- (void)setRegularization:(int)val NS_SWIFT_NAME(setRegularization(val:));
//
// int cv::ml::LogisticRegression::getTrainMethod()
//
/**
* @see `-setTrainMethod:`
*/
- (int)getTrainMethod NS_SWIFT_NAME(getTrainMethod());
//
// void cv::ml::LogisticRegression::setTrainMethod(int val)
//
/**
* getTrainMethod @see `-getTrainMethod:`
*/
- (void)setTrainMethod:(int)val NS_SWIFT_NAME(setTrainMethod(val:));
//
// int cv::ml::LogisticRegression::getMiniBatchSize()
//
/**
* @see `-setMiniBatchSize:`
*/
- (int)getMiniBatchSize NS_SWIFT_NAME(getMiniBatchSize());
//
// void cv::ml::LogisticRegression::setMiniBatchSize(int val)
//
/**
* getMiniBatchSize @see `-getMiniBatchSize:`
*/
- (void)setMiniBatchSize:(int)val NS_SWIFT_NAME(setMiniBatchSize(val:));
//
// TermCriteria cv::ml::LogisticRegression::getTermCriteria()
//
/**
* @see `-setTermCriteria:`
*/
- (TermCriteria*)getTermCriteria NS_SWIFT_NAME(getTermCriteria());
//
// void cv::ml::LogisticRegression::setTermCriteria(TermCriteria val)
//
/**
* getTermCriteria @see `-getTermCriteria:`
*/
- (void)setTermCriteria:(TermCriteria*)val NS_SWIFT_NAME(setTermCriteria(val:));
//
// float cv::ml::LogisticRegression::predict(Mat samples, Mat& results = Mat(), int flags = 0)
//
/**
* Predicts responses for input samples and returns a float type.
*
* @param samples The input data for the prediction algorithm. Matrix [m x n], where each row
* contains variables (features) of one object being classified. Should have data type CV_32F.
* @param results Predicted labels as a column matrix of type CV_32S.
* @param flags Not used.
*/
- (float)predict:(Mat*)samples results:(Mat*)results flags:(int)flags NS_SWIFT_NAME(predict(samples:results:flags:));
/**
* Predicts responses for input samples and returns a float type.
*
* @param samples The input data for the prediction algorithm. Matrix [m x n], where each row
* contains variables (features) of one object being classified. Should have data type CV_32F.
* @param results Predicted labels as a column matrix of type CV_32S.
*/
- (float)predict:(Mat*)samples results:(Mat*)results NS_SWIFT_NAME(predict(samples:results:));
/**
* Predicts responses for input samples and returns a float type.
*
* @param samples The input data for the prediction algorithm. Matrix [m x n], where each row
* contains variables (features) of one object being classified. Should have data type CV_32F.
*/
- (float)predict:(Mat*)samples NS_SWIFT_NAME(predict(samples:));
//
// Mat cv::ml::LogisticRegression::get_learnt_thetas()
//
/**
* This function returns the trained parameters arranged across rows.
*
* For a two class classification problem, it returns a row matrix. It returns learnt parameters of
* the Logistic Regression as a matrix of type CV_32F.
*/
- (Mat*)get_learnt_thetas NS_SWIFT_NAME(get_learnt_thetas());
//
// static Ptr_LogisticRegression cv::ml::LogisticRegression::create()
//
/**
* Creates empty model.
*
* Creates Logistic Regression model with parameters given.
*/
+ (LogisticRegression*)create NS_SWIFT_NAME(create());
//
// static Ptr_LogisticRegression cv::ml::LogisticRegression::load(String filepath, String nodeName = String())
//
/**
* Loads and creates a serialized LogisticRegression from a file
*
* Use LogisticRegression::save to serialize and store an LogisticRegression to disk.
* Load the LogisticRegression from this file again, by calling this function with the path to the file.
* Optionally specify the node for the file containing the classifier
*
* @param filepath path to serialized LogisticRegression
* @param nodeName name of node containing the classifier
*/
+ (LogisticRegression*)load:(NSString*)filepath nodeName:(NSString*)nodeName NS_SWIFT_NAME(load(filepath:nodeName:));
/**
* Loads and creates a serialized LogisticRegression from a file
*
* Use LogisticRegression::save to serialize and store an LogisticRegression to disk.
* Load the LogisticRegression from this file again, by calling this function with the path to the file.
* Optionally specify the node for the file containing the classifier
*
* @param filepath path to serialized LogisticRegression
*/
+ (LogisticRegression*)load:(NSString*)filepath NS_SWIFT_NAME(load(filepath:));
@end
NS_ASSUME_NONNULL_END