1552 lines
89 KiB
C#
1552 lines
89 KiB
C#
|
|
using OpenCVForUnity.CoreModule;
|
|
using OpenCVForUnity.UtilsModule;
|
|
using System;
|
|
using System.Collections.Generic;
|
|
using System.Runtime.InteropServices;
|
|
|
|
namespace OpenCVForUnity.BioinspiredModule
|
|
{
|
|
|
|
// C++: class Retina
|
|
/**
|
|
* class which allows the Gipsa/Listic Labs model to be used with OpenCV.
|
|
*
|
|
* This retina model allows spatio-temporal image processing (applied on still images, video sequences).
|
|
* As a summary, these are the retina model properties:
|
|
* <ul>
|
|
* <li>
|
|
* It applies a spectral whithening (mid-frequency details enhancement)
|
|
* </li>
|
|
* <li>
|
|
* high frequency spatio-temporal noise reduction
|
|
* </li>
|
|
* <li>
|
|
* low frequency luminance to be reduced (luminance range compression)
|
|
* </li>
|
|
* <li>
|
|
* local logarithmic luminance compression allows details to be enhanced in low light conditions
|
|
* </li>
|
|
* </ul>
|
|
*
|
|
* USE : this model can be used basically for spatio-temporal video effects but also for :
|
|
* _using the getParvo method output matrix : texture analysiswith enhanced signal to noise ratio and enhanced details robust against input images luminance ranges
|
|
* _using the getMagno method output matrix : motion analysis also with the previously cited properties
|
|
*
|
|
* for more information, reer to the following papers :
|
|
* Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
|
|
* Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
|
|
*
|
|
* The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
|
|
* take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
|
|
* B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
|
|
* take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
|
|
* more informations in the above cited Jeanny Heraults's book.
|
|
*/
|
|
|
|
public class Retina : Algorithm
|
|
{
|
|
|
|
protected override void Dispose(bool disposing)
|
|
{
|
|
|
|
try
|
|
{
|
|
if (disposing)
|
|
{
|
|
}
|
|
if (IsEnabledDispose)
|
|
{
|
|
if (nativeObj != IntPtr.Zero)
|
|
bioinspired_Retina_delete(nativeObj);
|
|
nativeObj = IntPtr.Zero;
|
|
}
|
|
}
|
|
finally
|
|
{
|
|
base.Dispose(disposing);
|
|
}
|
|
|
|
}
|
|
|
|
protected internal Retina(IntPtr addr) : base(addr) { }
|
|
|
|
// internal usage only
|
|
public static new Retina __fromPtr__(IntPtr addr) { return new Retina(addr); }
|
|
|
|
//
|
|
// C++: Size cv::bioinspired::Retina::getInputSize()
|
|
//
|
|
|
|
/**
|
|
* Retreive retina input buffer size
|
|
* return the retina input buffer size
|
|
*/
|
|
public Size getInputSize()
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
double[] tmpArray = new double[2];
|
|
bioinspired_Retina_getInputSize_10(nativeObj, tmpArray);
|
|
Size retVal = new Size(tmpArray);
|
|
|
|
return retVal;
|
|
}
|
|
|
|
|
|
//
|
|
// C++: Size cv::bioinspired::Retina::getOutputSize()
|
|
//
|
|
|
|
/**
|
|
* Retreive retina output buffer size that can be different from the input if a spatial log
|
|
* transformation is applied
|
|
* return the retina output buffer size
|
|
*/
|
|
public Size getOutputSize()
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
double[] tmpArray = new double[2];
|
|
bioinspired_Retina_getOutputSize_10(nativeObj, tmpArray);
|
|
Size retVal = new Size(tmpArray);
|
|
|
|
return retVal;
|
|
}
|
|
|
|
|
|
//
|
|
// C++: void cv::bioinspired::Retina::setup(String retinaParameterFile = "", bool applyDefaultSetupOnFailure = true)
|
|
//
|
|
|
|
/**
|
|
* Try to open an XML retina parameters file to adjust current retina instance setup
|
|
*
|
|
* <ul>
|
|
* <li>
|
|
* if the xml file does not exist, then default setup is applied
|
|
* </li>
|
|
* <li>
|
|
* warning, Exceptions are thrown if read XML file is not valid
|
|
* </li>
|
|
* </ul>
|
|
* param retinaParameterFile the parameters filename
|
|
* param applyDefaultSetupOnFailure set to true if an error must be thrown on error
|
|
*
|
|
* You can retrieve the current parameters structure using the method Retina::getParameters and update
|
|
* it before running method Retina::setup.
|
|
*/
|
|
public void setup(string retinaParameterFile, bool applyDefaultSetupOnFailure)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setup_10(nativeObj, retinaParameterFile, applyDefaultSetupOnFailure);
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Try to open an XML retina parameters file to adjust current retina instance setup
|
|
*
|
|
* <ul>
|
|
* <li>
|
|
* if the xml file does not exist, then default setup is applied
|
|
* </li>
|
|
* <li>
|
|
* warning, Exceptions are thrown if read XML file is not valid
|
|
* </li>
|
|
* </ul>
|
|
* param retinaParameterFile the parameters filename
|
|
*
|
|
* You can retrieve the current parameters structure using the method Retina::getParameters and update
|
|
* it before running method Retina::setup.
|
|
*/
|
|
public void setup(string retinaParameterFile)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setup_11(nativeObj, retinaParameterFile);
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Try to open an XML retina parameters file to adjust current retina instance setup
|
|
*
|
|
* <ul>
|
|
* <li>
|
|
* if the xml file does not exist, then default setup is applied
|
|
* </li>
|
|
* <li>
|
|
* warning, Exceptions are thrown if read XML file is not valid
|
|
* </li>
|
|
* </ul>
|
|
*
|
|
* You can retrieve the current parameters structure using the method Retina::getParameters and update
|
|
* it before running method Retina::setup.
|
|
*/
|
|
public void setup()
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setup_12(nativeObj);
|
|
|
|
|
|
}
|
|
|
|
|
|
//
|
|
// C++: String cv::bioinspired::Retina::printSetup()
|
|
//
|
|
|
|
/**
|
|
* Outputs a string showing the used parameters setup
|
|
* return a string which contains formated parameters information
|
|
*/
|
|
public string printSetup()
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
string retVal = Marshal.PtrToStringAnsi(DisposableObject.ThrowIfNullIntPtr(bioinspired_Retina_printSetup_10(nativeObj)));
|
|
|
|
return retVal;
|
|
}
|
|
|
|
|
|
//
|
|
// C++: void cv::bioinspired::Retina::write(String fs)
|
|
//
|
|
|
|
/**
|
|
* Write xml/yml formated parameters information
|
|
* param fs the filename of the xml file that will be open and writen with formatted parameters
|
|
* information
|
|
*/
|
|
public void write(string fs)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_write_10(nativeObj, fs);
|
|
|
|
|
|
}
|
|
|
|
|
|
//
|
|
// C++: void cv::bioinspired::Retina::setupOPLandIPLParvoChannel(bool colorMode = true, bool normaliseOutput = true, float photoreceptorsLocalAdaptationSensitivity = 0.7f, float photoreceptorsTemporalConstant = 0.5f, float photoreceptorsSpatialConstant = 0.53f, float horizontalCellsGain = 0.f, float HcellsTemporalConstant = 1.f, float HcellsSpatialConstant = 7.f, float ganglionCellsSensitivity = 0.7f)
|
|
//
|
|
|
|
/**
|
|
* Setup the OPL and IPL parvo channels (see biologocal model)
|
|
*
|
|
* OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
|
|
* which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
|
|
* (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
|
|
* Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
|
|
* reference papers for more informations.
|
|
* for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
|
|
* param colorMode specifies if (true) color is processed of not (false) to then processing gray
|
|
* level image
|
|
* param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
|
|
* param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1
|
|
* (more log compression effect when value increases)
|
|
* param photoreceptorsTemporalConstant the time constant of the first order low pass filter of
|
|
* the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
|
|
* frames, typical value is 1 frame
|
|
* param photoreceptorsSpatialConstant the spatial constant of the first order low pass filter of
|
|
* the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
|
|
* pixels, typical value is 1 pixel
|
|
* param horizontalCellsGain gain of the horizontal cells network, if 0, then the mean value of
|
|
* the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
|
|
* still reachable at the output, typicall value is 0
|
|
* param HcellsTemporalConstant the time constant of the first order low pass filter of the
|
|
* horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
|
|
* frames, typical value is 1 frame, as the photoreceptors
|
|
* param HcellsSpatialConstant the spatial constant of the first order low pass filter of the
|
|
* horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
|
|
* typical value is 5 pixel, this value is also used for local contrast computing when computing
|
|
* the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
|
|
* channel model)
|
|
* param ganglionCellsSensitivity the compression strengh of the ganglion cells local adaptation
|
|
* output, set a value between 0.6 and 1 for best results, a high value increases more the low
|
|
* value sensitivity... and the output saturates faster, recommended value: 0.7
|
|
*/
|
|
public void setupOPLandIPLParvoChannel(bool colorMode, bool normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant, float photoreceptorsSpatialConstant, float horizontalCellsGain, float HcellsTemporalConstant, float HcellsSpatialConstant, float ganglionCellsSensitivity)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setupOPLandIPLParvoChannel_10(nativeObj, colorMode, normaliseOutput, photoreceptorsLocalAdaptationSensitivity, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain, HcellsTemporalConstant, HcellsSpatialConstant, ganglionCellsSensitivity);
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Setup the OPL and IPL parvo channels (see biologocal model)
|
|
*
|
|
* OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
|
|
* which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
|
|
* (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
|
|
* Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
|
|
* reference papers for more informations.
|
|
* for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
|
|
* param colorMode specifies if (true) color is processed of not (false) to then processing gray
|
|
* level image
|
|
* param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
|
|
* param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1
|
|
* (more log compression effect when value increases)
|
|
* param photoreceptorsTemporalConstant the time constant of the first order low pass filter of
|
|
* the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
|
|
* frames, typical value is 1 frame
|
|
* param photoreceptorsSpatialConstant the spatial constant of the first order low pass filter of
|
|
* the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
|
|
* pixels, typical value is 1 pixel
|
|
* param horizontalCellsGain gain of the horizontal cells network, if 0, then the mean value of
|
|
* the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
|
|
* still reachable at the output, typicall value is 0
|
|
* param HcellsTemporalConstant the time constant of the first order low pass filter of the
|
|
* horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
|
|
* frames, typical value is 1 frame, as the photoreceptors
|
|
* param HcellsSpatialConstant the spatial constant of the first order low pass filter of the
|
|
* horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
|
|
* typical value is 5 pixel, this value is also used for local contrast computing when computing
|
|
* the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
|
|
* channel model)
|
|
* output, set a value between 0.6 and 1 for best results, a high value increases more the low
|
|
* value sensitivity... and the output saturates faster, recommended value: 0.7
|
|
*/
|
|
public void setupOPLandIPLParvoChannel(bool colorMode, bool normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant, float photoreceptorsSpatialConstant, float horizontalCellsGain, float HcellsTemporalConstant, float HcellsSpatialConstant)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setupOPLandIPLParvoChannel_11(nativeObj, colorMode, normaliseOutput, photoreceptorsLocalAdaptationSensitivity, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain, HcellsTemporalConstant, HcellsSpatialConstant);
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Setup the OPL and IPL parvo channels (see biologocal model)
|
|
*
|
|
* OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
|
|
* which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
|
|
* (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
|
|
* Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
|
|
* reference papers for more informations.
|
|
* for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
|
|
* param colorMode specifies if (true) color is processed of not (false) to then processing gray
|
|
* level image
|
|
* param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
|
|
* param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1
|
|
* (more log compression effect when value increases)
|
|
* param photoreceptorsTemporalConstant the time constant of the first order low pass filter of
|
|
* the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
|
|
* frames, typical value is 1 frame
|
|
* param photoreceptorsSpatialConstant the spatial constant of the first order low pass filter of
|
|
* the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
|
|
* pixels, typical value is 1 pixel
|
|
* param horizontalCellsGain gain of the horizontal cells network, if 0, then the mean value of
|
|
* the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
|
|
* still reachable at the output, typicall value is 0
|
|
* param HcellsTemporalConstant the time constant of the first order low pass filter of the
|
|
* horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
|
|
* frames, typical value is 1 frame, as the photoreceptors
|
|
* horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
|
|
* typical value is 5 pixel, this value is also used for local contrast computing when computing
|
|
* the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
|
|
* channel model)
|
|
* output, set a value between 0.6 and 1 for best results, a high value increases more the low
|
|
* value sensitivity... and the output saturates faster, recommended value: 0.7
|
|
*/
|
|
public void setupOPLandIPLParvoChannel(bool colorMode, bool normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant, float photoreceptorsSpatialConstant, float horizontalCellsGain, float HcellsTemporalConstant)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setupOPLandIPLParvoChannel_12(nativeObj, colorMode, normaliseOutput, photoreceptorsLocalAdaptationSensitivity, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain, HcellsTemporalConstant);
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Setup the OPL and IPL parvo channels (see biologocal model)
|
|
*
|
|
* OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
|
|
* which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
|
|
* (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
|
|
* Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
|
|
* reference papers for more informations.
|
|
* for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
|
|
* param colorMode specifies if (true) color is processed of not (false) to then processing gray
|
|
* level image
|
|
* param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
|
|
* param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1
|
|
* (more log compression effect when value increases)
|
|
* param photoreceptorsTemporalConstant the time constant of the first order low pass filter of
|
|
* the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
|
|
* frames, typical value is 1 frame
|
|
* param photoreceptorsSpatialConstant the spatial constant of the first order low pass filter of
|
|
* the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
|
|
* pixels, typical value is 1 pixel
|
|
* param horizontalCellsGain gain of the horizontal cells network, if 0, then the mean value of
|
|
* the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
|
|
* still reachable at the output, typicall value is 0
|
|
* horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
|
|
* frames, typical value is 1 frame, as the photoreceptors
|
|
* horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
|
|
* typical value is 5 pixel, this value is also used for local contrast computing when computing
|
|
* the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
|
|
* channel model)
|
|
* output, set a value between 0.6 and 1 for best results, a high value increases more the low
|
|
* value sensitivity... and the output saturates faster, recommended value: 0.7
|
|
*/
|
|
public void setupOPLandIPLParvoChannel(bool colorMode, bool normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant, float photoreceptorsSpatialConstant, float horizontalCellsGain)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setupOPLandIPLParvoChannel_13(nativeObj, colorMode, normaliseOutput, photoreceptorsLocalAdaptationSensitivity, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain);
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Setup the OPL and IPL parvo channels (see biologocal model)
|
|
*
|
|
* OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
|
|
* which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
|
|
* (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
|
|
* Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
|
|
* reference papers for more informations.
|
|
* for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
|
|
* param colorMode specifies if (true) color is processed of not (false) to then processing gray
|
|
* level image
|
|
* param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
|
|
* param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1
|
|
* (more log compression effect when value increases)
|
|
* param photoreceptorsTemporalConstant the time constant of the first order low pass filter of
|
|
* the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
|
|
* frames, typical value is 1 frame
|
|
* param photoreceptorsSpatialConstant the spatial constant of the first order low pass filter of
|
|
* the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
|
|
* pixels, typical value is 1 pixel
|
|
* the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
|
|
* still reachable at the output, typicall value is 0
|
|
* horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
|
|
* frames, typical value is 1 frame, as the photoreceptors
|
|
* horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
|
|
* typical value is 5 pixel, this value is also used for local contrast computing when computing
|
|
* the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
|
|
* channel model)
|
|
* output, set a value between 0.6 and 1 for best results, a high value increases more the low
|
|
* value sensitivity... and the output saturates faster, recommended value: 0.7
|
|
*/
|
|
public void setupOPLandIPLParvoChannel(bool colorMode, bool normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant, float photoreceptorsSpatialConstant)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setupOPLandIPLParvoChannel_14(nativeObj, colorMode, normaliseOutput, photoreceptorsLocalAdaptationSensitivity, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant);
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Setup the OPL and IPL parvo channels (see biologocal model)
|
|
*
|
|
* OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
|
|
* which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
|
|
* (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
|
|
* Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
|
|
* reference papers for more informations.
|
|
* for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
|
|
* param colorMode specifies if (true) color is processed of not (false) to then processing gray
|
|
* level image
|
|
* param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
|
|
* param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1
|
|
* (more log compression effect when value increases)
|
|
* param photoreceptorsTemporalConstant the time constant of the first order low pass filter of
|
|
* the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
|
|
* frames, typical value is 1 frame
|
|
* the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
|
|
* pixels, typical value is 1 pixel
|
|
* the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
|
|
* still reachable at the output, typicall value is 0
|
|
* horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
|
|
* frames, typical value is 1 frame, as the photoreceptors
|
|
* horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
|
|
* typical value is 5 pixel, this value is also used for local contrast computing when computing
|
|
* the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
|
|
* channel model)
|
|
* output, set a value between 0.6 and 1 for best results, a high value increases more the low
|
|
* value sensitivity... and the output saturates faster, recommended value: 0.7
|
|
*/
|
|
public void setupOPLandIPLParvoChannel(bool colorMode, bool normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setupOPLandIPLParvoChannel_15(nativeObj, colorMode, normaliseOutput, photoreceptorsLocalAdaptationSensitivity, photoreceptorsTemporalConstant);
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Setup the OPL and IPL parvo channels (see biologocal model)
|
|
*
|
|
* OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
|
|
* which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
|
|
* (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
|
|
* Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
|
|
* reference papers for more informations.
|
|
* for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
|
|
* param colorMode specifies if (true) color is processed of not (false) to then processing gray
|
|
* level image
|
|
* param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
|
|
* param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1
|
|
* (more log compression effect when value increases)
|
|
* the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
|
|
* frames, typical value is 1 frame
|
|
* the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
|
|
* pixels, typical value is 1 pixel
|
|
* the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
|
|
* still reachable at the output, typicall value is 0
|
|
* horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
|
|
* frames, typical value is 1 frame, as the photoreceptors
|
|
* horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
|
|
* typical value is 5 pixel, this value is also used for local contrast computing when computing
|
|
* the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
|
|
* channel model)
|
|
* output, set a value between 0.6 and 1 for best results, a high value increases more the low
|
|
* value sensitivity... and the output saturates faster, recommended value: 0.7
|
|
*/
|
|
public void setupOPLandIPLParvoChannel(bool colorMode, bool normaliseOutput, float photoreceptorsLocalAdaptationSensitivity)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setupOPLandIPLParvoChannel_16(nativeObj, colorMode, normaliseOutput, photoreceptorsLocalAdaptationSensitivity);
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Setup the OPL and IPL parvo channels (see biologocal model)
|
|
*
|
|
* OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
|
|
* which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
|
|
* (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
|
|
* Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
|
|
* reference papers for more informations.
|
|
* for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
|
|
* param colorMode specifies if (true) color is processed of not (false) to then processing gray
|
|
* level image
|
|
* param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
|
|
* (more log compression effect when value increases)
|
|
* the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
|
|
* frames, typical value is 1 frame
|
|
* the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
|
|
* pixels, typical value is 1 pixel
|
|
* the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
|
|
* still reachable at the output, typicall value is 0
|
|
* horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
|
|
* frames, typical value is 1 frame, as the photoreceptors
|
|
* horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
|
|
* typical value is 5 pixel, this value is also used for local contrast computing when computing
|
|
* the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
|
|
* channel model)
|
|
* output, set a value between 0.6 and 1 for best results, a high value increases more the low
|
|
* value sensitivity... and the output saturates faster, recommended value: 0.7
|
|
*/
|
|
public void setupOPLandIPLParvoChannel(bool colorMode, bool normaliseOutput)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setupOPLandIPLParvoChannel_17(nativeObj, colorMode, normaliseOutput);
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Setup the OPL and IPL parvo channels (see biologocal model)
|
|
*
|
|
* OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
|
|
* which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
|
|
* (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
|
|
* Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
|
|
* reference papers for more informations.
|
|
* for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
|
|
* param colorMode specifies if (true) color is processed of not (false) to then processing gray
|
|
* level image
|
|
* (more log compression effect when value increases)
|
|
* the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
|
|
* frames, typical value is 1 frame
|
|
* the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
|
|
* pixels, typical value is 1 pixel
|
|
* the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
|
|
* still reachable at the output, typicall value is 0
|
|
* horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
|
|
* frames, typical value is 1 frame, as the photoreceptors
|
|
* horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
|
|
* typical value is 5 pixel, this value is also used for local contrast computing when computing
|
|
* the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
|
|
* channel model)
|
|
* output, set a value between 0.6 and 1 for best results, a high value increases more the low
|
|
* value sensitivity... and the output saturates faster, recommended value: 0.7
|
|
*/
|
|
public void setupOPLandIPLParvoChannel(bool colorMode)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setupOPLandIPLParvoChannel_18(nativeObj, colorMode);
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Setup the OPL and IPL parvo channels (see biologocal model)
|
|
*
|
|
* OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
|
|
* which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
|
|
* (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
|
|
* Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
|
|
* reference papers for more informations.
|
|
* for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
|
|
* level image
|
|
* (more log compression effect when value increases)
|
|
* the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
|
|
* frames, typical value is 1 frame
|
|
* the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
|
|
* pixels, typical value is 1 pixel
|
|
* the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
|
|
* still reachable at the output, typicall value is 0
|
|
* horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
|
|
* frames, typical value is 1 frame, as the photoreceptors
|
|
* horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
|
|
* typical value is 5 pixel, this value is also used for local contrast computing when computing
|
|
* the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
|
|
* channel model)
|
|
* output, set a value between 0.6 and 1 for best results, a high value increases more the low
|
|
* value sensitivity... and the output saturates faster, recommended value: 0.7
|
|
*/
|
|
public void setupOPLandIPLParvoChannel()
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setupOPLandIPLParvoChannel_19(nativeObj);
|
|
|
|
|
|
}
|
|
|
|
|
|
//
|
|
// C++: void cv::bioinspired::Retina::setupIPLMagnoChannel(bool normaliseOutput = true, float parasolCells_beta = 0.f, float parasolCells_tau = 0.f, float parasolCells_k = 7.f, float amacrinCellsTemporalCutFrequency = 1.2f, float V0CompressionParameter = 0.95f, float localAdaptintegration_tau = 0.f, float localAdaptintegration_k = 7.f)
|
|
//
|
|
|
|
/**
|
|
* Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
|
|
*
|
|
* this channel processes signals output from OPL processing stage in peripheral vision, it allows
|
|
* motion information enhancement. It is decorrelated from the details channel. See reference
|
|
* papers for more details.
|
|
*
|
|
* param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
|
|
* param parasolCells_beta the low pass filter gain used for local contrast adaptation at the
|
|
* IPL level of the retina (for ganglion cells local adaptation), typical value is 0
|
|
* param parasolCells_tau the low pass filter time constant used for local contrast adaptation
|
|
* at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
|
|
* value is 0 (immediate response)
|
|
* param parasolCells_k the low pass filter spatial constant used for local contrast adaptation
|
|
* at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
|
|
* value is 5
|
|
* param amacrinCellsTemporalCutFrequency the time constant of the first order high pass fiter of
|
|
* the magnocellular way (motion information channel), unit is frames, typical value is 1.2
|
|
* param V0CompressionParameter the compression strengh of the ganglion cells local adaptation
|
|
* output, set a value between 0.6 and 1 for best results, a high value increases more the low
|
|
* value sensitivity... and the output saturates faster, recommended value: 0.95
|
|
* param localAdaptintegration_tau specifies the temporal constant of the low pas filter
|
|
* involved in the computation of the local "motion mean" for the local adaptation computation
|
|
* param localAdaptintegration_k specifies the spatial constant of the low pas filter involved
|
|
* in the computation of the local "motion mean" for the local adaptation computation
|
|
*/
|
|
public void setupIPLMagnoChannel(bool normaliseOutput, float parasolCells_beta, float parasolCells_tau, float parasolCells_k, float amacrinCellsTemporalCutFrequency, float V0CompressionParameter, float localAdaptintegration_tau, float localAdaptintegration_k)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setupIPLMagnoChannel_10(nativeObj, normaliseOutput, parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, V0CompressionParameter, localAdaptintegration_tau, localAdaptintegration_k);
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
|
|
*
|
|
* this channel processes signals output from OPL processing stage in peripheral vision, it allows
|
|
* motion information enhancement. It is decorrelated from the details channel. See reference
|
|
* papers for more details.
|
|
*
|
|
* param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
|
|
* param parasolCells_beta the low pass filter gain used for local contrast adaptation at the
|
|
* IPL level of the retina (for ganglion cells local adaptation), typical value is 0
|
|
* param parasolCells_tau the low pass filter time constant used for local contrast adaptation
|
|
* at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
|
|
* value is 0 (immediate response)
|
|
* param parasolCells_k the low pass filter spatial constant used for local contrast adaptation
|
|
* at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
|
|
* value is 5
|
|
* param amacrinCellsTemporalCutFrequency the time constant of the first order high pass fiter of
|
|
* the magnocellular way (motion information channel), unit is frames, typical value is 1.2
|
|
* param V0CompressionParameter the compression strengh of the ganglion cells local adaptation
|
|
* output, set a value between 0.6 and 1 for best results, a high value increases more the low
|
|
* value sensitivity... and the output saturates faster, recommended value: 0.95
|
|
* param localAdaptintegration_tau specifies the temporal constant of the low pas filter
|
|
* involved in the computation of the local "motion mean" for the local adaptation computation
|
|
* in the computation of the local "motion mean" for the local adaptation computation
|
|
*/
|
|
public void setupIPLMagnoChannel(bool normaliseOutput, float parasolCells_beta, float parasolCells_tau, float parasolCells_k, float amacrinCellsTemporalCutFrequency, float V0CompressionParameter, float localAdaptintegration_tau)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setupIPLMagnoChannel_11(nativeObj, normaliseOutput, parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, V0CompressionParameter, localAdaptintegration_tau);
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
|
|
*
|
|
* this channel processes signals output from OPL processing stage in peripheral vision, it allows
|
|
* motion information enhancement. It is decorrelated from the details channel. See reference
|
|
* papers for more details.
|
|
*
|
|
* param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
|
|
* param parasolCells_beta the low pass filter gain used for local contrast adaptation at the
|
|
* IPL level of the retina (for ganglion cells local adaptation), typical value is 0
|
|
* param parasolCells_tau the low pass filter time constant used for local contrast adaptation
|
|
* at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
|
|
* value is 0 (immediate response)
|
|
* param parasolCells_k the low pass filter spatial constant used for local contrast adaptation
|
|
* at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
|
|
* value is 5
|
|
* param amacrinCellsTemporalCutFrequency the time constant of the first order high pass fiter of
|
|
* the magnocellular way (motion information channel), unit is frames, typical value is 1.2
|
|
* param V0CompressionParameter the compression strengh of the ganglion cells local adaptation
|
|
* output, set a value between 0.6 and 1 for best results, a high value increases more the low
|
|
* value sensitivity... and the output saturates faster, recommended value: 0.95
|
|
* involved in the computation of the local "motion mean" for the local adaptation computation
|
|
* in the computation of the local "motion mean" for the local adaptation computation
|
|
*/
|
|
public void setupIPLMagnoChannel(bool normaliseOutput, float parasolCells_beta, float parasolCells_tau, float parasolCells_k, float amacrinCellsTemporalCutFrequency, float V0CompressionParameter)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setupIPLMagnoChannel_12(nativeObj, normaliseOutput, parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, V0CompressionParameter);
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
|
|
*
|
|
* this channel processes signals output from OPL processing stage in peripheral vision, it allows
|
|
* motion information enhancement. It is decorrelated from the details channel. See reference
|
|
* papers for more details.
|
|
*
|
|
* param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
|
|
* param parasolCells_beta the low pass filter gain used for local contrast adaptation at the
|
|
* IPL level of the retina (for ganglion cells local adaptation), typical value is 0
|
|
* param parasolCells_tau the low pass filter time constant used for local contrast adaptation
|
|
* at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
|
|
* value is 0 (immediate response)
|
|
* param parasolCells_k the low pass filter spatial constant used for local contrast adaptation
|
|
* at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
|
|
* value is 5
|
|
* param amacrinCellsTemporalCutFrequency the time constant of the first order high pass fiter of
|
|
* the magnocellular way (motion information channel), unit is frames, typical value is 1.2
|
|
* output, set a value between 0.6 and 1 for best results, a high value increases more the low
|
|
* value sensitivity... and the output saturates faster, recommended value: 0.95
|
|
* involved in the computation of the local "motion mean" for the local adaptation computation
|
|
* in the computation of the local "motion mean" for the local adaptation computation
|
|
*/
|
|
public void setupIPLMagnoChannel(bool normaliseOutput, float parasolCells_beta, float parasolCells_tau, float parasolCells_k, float amacrinCellsTemporalCutFrequency)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setupIPLMagnoChannel_13(nativeObj, normaliseOutput, parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency);
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
|
|
*
|
|
* this channel processes signals output from OPL processing stage in peripheral vision, it allows
|
|
* motion information enhancement. It is decorrelated from the details channel. See reference
|
|
* papers for more details.
|
|
*
|
|
* param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
|
|
* param parasolCells_beta the low pass filter gain used for local contrast adaptation at the
|
|
* IPL level of the retina (for ganglion cells local adaptation), typical value is 0
|
|
* param parasolCells_tau the low pass filter time constant used for local contrast adaptation
|
|
* at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
|
|
* value is 0 (immediate response)
|
|
* param parasolCells_k the low pass filter spatial constant used for local contrast adaptation
|
|
* at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
|
|
* value is 5
|
|
* the magnocellular way (motion information channel), unit is frames, typical value is 1.2
|
|
* output, set a value between 0.6 and 1 for best results, a high value increases more the low
|
|
* value sensitivity... and the output saturates faster, recommended value: 0.95
|
|
* involved in the computation of the local "motion mean" for the local adaptation computation
|
|
* in the computation of the local "motion mean" for the local adaptation computation
|
|
*/
|
|
public void setupIPLMagnoChannel(bool normaliseOutput, float parasolCells_beta, float parasolCells_tau, float parasolCells_k)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setupIPLMagnoChannel_14(nativeObj, normaliseOutput, parasolCells_beta, parasolCells_tau, parasolCells_k);
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
|
|
*
|
|
* this channel processes signals output from OPL processing stage in peripheral vision, it allows
|
|
* motion information enhancement. It is decorrelated from the details channel. See reference
|
|
* papers for more details.
|
|
*
|
|
* param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
|
|
* param parasolCells_beta the low pass filter gain used for local contrast adaptation at the
|
|
* IPL level of the retina (for ganglion cells local adaptation), typical value is 0
|
|
* param parasolCells_tau the low pass filter time constant used for local contrast adaptation
|
|
* at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
|
|
* value is 0 (immediate response)
|
|
* at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
|
|
* value is 5
|
|
* the magnocellular way (motion information channel), unit is frames, typical value is 1.2
|
|
* output, set a value between 0.6 and 1 for best results, a high value increases more the low
|
|
* value sensitivity... and the output saturates faster, recommended value: 0.95
|
|
* involved in the computation of the local "motion mean" for the local adaptation computation
|
|
* in the computation of the local "motion mean" for the local adaptation computation
|
|
*/
|
|
public void setupIPLMagnoChannel(bool normaliseOutput, float parasolCells_beta, float parasolCells_tau)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setupIPLMagnoChannel_15(nativeObj, normaliseOutput, parasolCells_beta, parasolCells_tau);
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
|
|
*
|
|
* this channel processes signals output from OPL processing stage in peripheral vision, it allows
|
|
* motion information enhancement. It is decorrelated from the details channel. See reference
|
|
* papers for more details.
|
|
*
|
|
* param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
|
|
* param parasolCells_beta the low pass filter gain used for local contrast adaptation at the
|
|
* IPL level of the retina (for ganglion cells local adaptation), typical value is 0
|
|
* at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
|
|
* value is 0 (immediate response)
|
|
* at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
|
|
* value is 5
|
|
* the magnocellular way (motion information channel), unit is frames, typical value is 1.2
|
|
* output, set a value between 0.6 and 1 for best results, a high value increases more the low
|
|
* value sensitivity... and the output saturates faster, recommended value: 0.95
|
|
* involved in the computation of the local "motion mean" for the local adaptation computation
|
|
* in the computation of the local "motion mean" for the local adaptation computation
|
|
*/
|
|
public void setupIPLMagnoChannel(bool normaliseOutput, float parasolCells_beta)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setupIPLMagnoChannel_16(nativeObj, normaliseOutput, parasolCells_beta);
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
|
|
*
|
|
* this channel processes signals output from OPL processing stage in peripheral vision, it allows
|
|
* motion information enhancement. It is decorrelated from the details channel. See reference
|
|
* papers for more details.
|
|
*
|
|
* param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
|
|
* IPL level of the retina (for ganglion cells local adaptation), typical value is 0
|
|
* at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
|
|
* value is 0 (immediate response)
|
|
* at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
|
|
* value is 5
|
|
* the magnocellular way (motion information channel), unit is frames, typical value is 1.2
|
|
* output, set a value between 0.6 and 1 for best results, a high value increases more the low
|
|
* value sensitivity... and the output saturates faster, recommended value: 0.95
|
|
* involved in the computation of the local "motion mean" for the local adaptation computation
|
|
* in the computation of the local "motion mean" for the local adaptation computation
|
|
*/
|
|
public void setupIPLMagnoChannel(bool normaliseOutput)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setupIPLMagnoChannel_17(nativeObj, normaliseOutput);
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
|
|
*
|
|
* this channel processes signals output from OPL processing stage in peripheral vision, it allows
|
|
* motion information enhancement. It is decorrelated from the details channel. See reference
|
|
* papers for more details.
|
|
*
|
|
* IPL level of the retina (for ganglion cells local adaptation), typical value is 0
|
|
* at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
|
|
* value is 0 (immediate response)
|
|
* at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
|
|
* value is 5
|
|
* the magnocellular way (motion information channel), unit is frames, typical value is 1.2
|
|
* output, set a value between 0.6 and 1 for best results, a high value increases more the low
|
|
* value sensitivity... and the output saturates faster, recommended value: 0.95
|
|
* involved in the computation of the local "motion mean" for the local adaptation computation
|
|
* in the computation of the local "motion mean" for the local adaptation computation
|
|
*/
|
|
public void setupIPLMagnoChannel()
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setupIPLMagnoChannel_18(nativeObj);
|
|
|
|
|
|
}
|
|
|
|
|
|
//
|
|
// C++: void cv::bioinspired::Retina::run(Mat inputImage)
|
|
//
|
|
|
|
/**
|
|
* Method which allows retina to be applied on an input image,
|
|
*
|
|
* after run, encapsulated retina module is ready to deliver its outputs using dedicated
|
|
* acccessors, see getParvo and getMagno methods
|
|
* param inputImage the input Mat image to be processed, can be gray level or BGR coded in any
|
|
* format (from 8bit to 16bits)
|
|
*/
|
|
public void run(Mat inputImage)
|
|
{
|
|
ThrowIfDisposed();
|
|
if (inputImage != null) inputImage.ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_run_10(nativeObj, inputImage.nativeObj);
|
|
|
|
|
|
}
|
|
|
|
|
|
//
|
|
// C++: void cv::bioinspired::Retina::applyFastToneMapping(Mat inputImage, Mat& outputToneMappedImage)
|
|
//
|
|
|
|
/**
|
|
* Method which processes an image in the aim to correct its luminance correct
|
|
* backlight problems, enhance details in shadows.
|
|
*
|
|
* This method is designed to perform High Dynamic Range image tone mapping (compress >8bit/pixel
|
|
* images to 8bit/pixel). This is a simplified version of the Retina Parvocellular model
|
|
* (simplified version of the run/getParvo methods call) since it does not include the
|
|
* spatio-temporal filter modelling the Outer Plexiform Layer of the retina that performs spectral
|
|
* whitening and many other stuff. However, it works great for tone mapping and in a faster way.
|
|
*
|
|
* Check the demos and experiments section to see examples and the way to perform tone mapping
|
|
* using the original retina model and the method.
|
|
*
|
|
* param inputImage the input image to process (should be coded in float format : CV_32F,
|
|
* CV_32FC1, CV_32F_C3, CV_32F_C4, the 4th channel won't be considered).
|
|
* param outputToneMappedImage the output 8bit/channel tone mapped image (CV_8U or CV_8UC3 format).
|
|
*/
|
|
public void applyFastToneMapping(Mat inputImage, Mat outputToneMappedImage)
|
|
{
|
|
ThrowIfDisposed();
|
|
if (inputImage != null) inputImage.ThrowIfDisposed();
|
|
if (outputToneMappedImage != null) outputToneMappedImage.ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_applyFastToneMapping_10(nativeObj, inputImage.nativeObj, outputToneMappedImage.nativeObj);
|
|
|
|
|
|
}
|
|
|
|
|
|
//
|
|
// C++: void cv::bioinspired::Retina::getParvo(Mat& retinaOutput_parvo)
|
|
//
|
|
|
|
/**
|
|
* Accessor of the details channel of the retina (models foveal vision).
|
|
*
|
|
* Warning, getParvoRAW methods return buffers that are not rescaled within range [0;255] while
|
|
* the non RAW method allows a normalized matrix to be retrieved.
|
|
*
|
|
* param retinaOutput_parvo the output buffer (reallocated if necessary), format can be :
|
|
* <ul>
|
|
* <li>
|
|
* a Mat, this output is rescaled for standard 8bits image processing use in OpenCV
|
|
* </li>
|
|
* <li>
|
|
* RAW methods actually return a 1D matrix (encoding is R1, R2, ... Rn, G1, G2, ..., Gn, B1,
|
|
* B2, ...Bn), this output is the original retina filter model output, without any
|
|
* quantification or rescaling.
|
|
* SEE: getParvoRAW
|
|
* </li>
|
|
* </ul>
|
|
*/
|
|
public void getParvo(Mat retinaOutput_parvo)
|
|
{
|
|
ThrowIfDisposed();
|
|
if (retinaOutput_parvo != null) retinaOutput_parvo.ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_getParvo_10(nativeObj, retinaOutput_parvo.nativeObj);
|
|
|
|
|
|
}
|
|
|
|
|
|
//
|
|
// C++: void cv::bioinspired::Retina::getParvoRAW(Mat& retinaOutput_parvo)
|
|
//
|
|
|
|
/**
|
|
* Accessor of the details channel of the retina (models foveal vision).
|
|
* SEE: getParvo
|
|
* param retinaOutput_parvo automatically generated
|
|
*/
|
|
public void getParvoRAW(Mat retinaOutput_parvo)
|
|
{
|
|
ThrowIfDisposed();
|
|
if (retinaOutput_parvo != null) retinaOutput_parvo.ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_getParvoRAW_10(nativeObj, retinaOutput_parvo.nativeObj);
|
|
|
|
|
|
}
|
|
|
|
|
|
//
|
|
// C++: void cv::bioinspired::Retina::getMagno(Mat& retinaOutput_magno)
|
|
//
|
|
|
|
/**
|
|
* Accessor of the motion channel of the retina (models peripheral vision).
|
|
*
|
|
* Warning, getMagnoRAW methods return buffers that are not rescaled within range [0;255] while
|
|
* the non RAW method allows a normalized matrix to be retrieved.
|
|
* param retinaOutput_magno the output buffer (reallocated if necessary), format can be :
|
|
* <ul>
|
|
* <li>
|
|
* a Mat, this output is rescaled for standard 8bits image processing use in OpenCV
|
|
* </li>
|
|
* <li>
|
|
* RAW methods actually return a 1D matrix (encoding is M1, M2,... Mn), this output is the
|
|
* original retina filter model output, without any quantification or rescaling.
|
|
* SEE: getMagnoRAW
|
|
* </li>
|
|
* </ul>
|
|
*/
|
|
public void getMagno(Mat retinaOutput_magno)
|
|
{
|
|
ThrowIfDisposed();
|
|
if (retinaOutput_magno != null) retinaOutput_magno.ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_getMagno_10(nativeObj, retinaOutput_magno.nativeObj);
|
|
|
|
|
|
}
|
|
|
|
|
|
//
|
|
// C++: void cv::bioinspired::Retina::getMagnoRAW(Mat& retinaOutput_magno)
|
|
//
|
|
|
|
/**
|
|
* Accessor of the motion channel of the retina (models peripheral vision).
|
|
* SEE: getMagno
|
|
* param retinaOutput_magno automatically generated
|
|
*/
|
|
public void getMagnoRAW(Mat retinaOutput_magno)
|
|
{
|
|
ThrowIfDisposed();
|
|
if (retinaOutput_magno != null) retinaOutput_magno.ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_getMagnoRAW_10(nativeObj, retinaOutput_magno.nativeObj);
|
|
|
|
|
|
}
|
|
|
|
|
|
//
|
|
// C++: Mat cv::bioinspired::Retina::getMagnoRAW()
|
|
//
|
|
|
|
public Mat getMagnoRAW()
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
return new Mat(DisposableObject.ThrowIfNullIntPtr(bioinspired_Retina_getMagnoRAW_11(nativeObj)));
|
|
|
|
|
|
}
|
|
|
|
|
|
//
|
|
// C++: Mat cv::bioinspired::Retina::getParvoRAW()
|
|
//
|
|
|
|
public Mat getParvoRAW()
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
return new Mat(DisposableObject.ThrowIfNullIntPtr(bioinspired_Retina_getParvoRAW_11(nativeObj)));
|
|
|
|
|
|
}
|
|
|
|
|
|
//
|
|
// C++: void cv::bioinspired::Retina::setColorSaturation(bool saturateColors = true, float colorSaturationValue = 4.0f)
|
|
//
|
|
|
|
/**
|
|
* Activate color saturation as the final step of the color demultiplexing process -> this
|
|
* saturation is a sigmoide function applied to each channel of the demultiplexed image.
|
|
* param saturateColors boolean that activates color saturation (if true) or desactivate (if false)
|
|
* param colorSaturationValue the saturation factor : a simple factor applied on the chrominance
|
|
* buffers
|
|
*/
|
|
public void setColorSaturation(bool saturateColors, float colorSaturationValue)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setColorSaturation_10(nativeObj, saturateColors, colorSaturationValue);
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Activate color saturation as the final step of the color demultiplexing process -> this
|
|
* saturation is a sigmoide function applied to each channel of the demultiplexed image.
|
|
* param saturateColors boolean that activates color saturation (if true) or desactivate (if false)
|
|
* buffers
|
|
*/
|
|
public void setColorSaturation(bool saturateColors)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setColorSaturation_11(nativeObj, saturateColors);
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Activate color saturation as the final step of the color demultiplexing process -> this
|
|
* saturation is a sigmoide function applied to each channel of the demultiplexed image.
|
|
* buffers
|
|
*/
|
|
public void setColorSaturation()
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_setColorSaturation_12(nativeObj);
|
|
|
|
|
|
}
|
|
|
|
|
|
//
|
|
// C++: void cv::bioinspired::Retina::clearBuffers()
|
|
//
|
|
|
|
/**
|
|
* Clears all retina buffers
|
|
*
|
|
* (equivalent to opening the eyes after a long period of eye close ;o) whatchout the temporal
|
|
* transition occuring just after this method call.
|
|
*/
|
|
public void clearBuffers()
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_clearBuffers_10(nativeObj);
|
|
|
|
|
|
}
|
|
|
|
|
|
//
|
|
// C++: void cv::bioinspired::Retina::activateMovingContoursProcessing(bool activate)
|
|
//
|
|
|
|
/**
|
|
* Activate/desactivate the Magnocellular pathway processing (motion information extraction), by
|
|
* default, it is activated
|
|
* param activate true if Magnocellular output should be activated, false if not... if activated,
|
|
* the Magnocellular output can be retrieved using the <b>getMagno</b> methods
|
|
*/
|
|
public void activateMovingContoursProcessing(bool activate)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_activateMovingContoursProcessing_10(nativeObj, activate);
|
|
|
|
|
|
}
|
|
|
|
|
|
//
|
|
// C++: void cv::bioinspired::Retina::activateContoursProcessing(bool activate)
|
|
//
|
|
|
|
/**
|
|
* Activate/desactivate the Parvocellular pathway processing (contours information extraction), by
|
|
* default, it is activated
|
|
* param activate true if Parvocellular (contours information extraction) output should be
|
|
* activated, false if not... if activated, the Parvocellular output can be retrieved using the
|
|
* Retina::getParvo methods
|
|
*/
|
|
public void activateContoursProcessing(bool activate)
|
|
{
|
|
ThrowIfDisposed();
|
|
|
|
bioinspired_Retina_activateContoursProcessing_10(nativeObj, activate);
|
|
|
|
|
|
}
|
|
|
|
|
|
//
|
|
// C++: static Ptr_Retina cv::bioinspired::Retina::create(Size inputSize)
|
|
//
|
|
|
|
public static Retina create(Size inputSize)
|
|
{
|
|
|
|
|
|
return Retina.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(bioinspired_Retina_create_10(inputSize.width, inputSize.height)));
|
|
|
|
|
|
}
|
|
|
|
|
|
//
|
|
// C++: static Ptr_Retina cv::bioinspired::Retina::create(Size inputSize, bool colorMode, int colorSamplingMethod = RETINA_COLOR_BAYER, bool useRetinaLogSampling = false, float reductionFactor = 1.0f, float samplingStrength = 10.0f)
|
|
//
|
|
|
|
/**
|
|
* Constructors from standardized interfaces : retreive a smart pointer to a Retina instance
|
|
*
|
|
* param inputSize the input frame size
|
|
* param colorMode the chosen processing mode : with or without color processing
|
|
* param colorSamplingMethod specifies which kind of color sampling will be used :
|
|
* <ul>
|
|
* <li>
|
|
* cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice
|
|
* </li>
|
|
* <li>
|
|
* cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
|
|
* </li>
|
|
* <li>
|
|
* cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling
|
|
* </li>
|
|
* </ul>
|
|
* param useRetinaLogSampling activate retina log sampling, if true, the 2 following parameters can
|
|
* be used
|
|
* param reductionFactor only usefull if param useRetinaLogSampling=true, specifies the reduction
|
|
* factor of the output frame (as the center (fovea) is high resolution and corners can be
|
|
* underscaled, then a reduction of the output is allowed without precision leak
|
|
* param samplingStrength only usefull if param useRetinaLogSampling=true, specifies the strength of
|
|
* the log scale that is applied
|
|
* return automatically generated
|
|
*/
|
|
public static Retina create(Size inputSize, bool colorMode, int colorSamplingMethod, bool useRetinaLogSampling, float reductionFactor, float samplingStrength)
|
|
{
|
|
|
|
|
|
return Retina.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(bioinspired_Retina_create_11(inputSize.width, inputSize.height, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrength)));
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Constructors from standardized interfaces : retreive a smart pointer to a Retina instance
|
|
*
|
|
* param inputSize the input frame size
|
|
* param colorMode the chosen processing mode : with or without color processing
|
|
* param colorSamplingMethod specifies which kind of color sampling will be used :
|
|
* <ul>
|
|
* <li>
|
|
* cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice
|
|
* </li>
|
|
* <li>
|
|
* cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
|
|
* </li>
|
|
* <li>
|
|
* cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling
|
|
* </li>
|
|
* </ul>
|
|
* param useRetinaLogSampling activate retina log sampling, if true, the 2 following parameters can
|
|
* be used
|
|
* param reductionFactor only usefull if param useRetinaLogSampling=true, specifies the reduction
|
|
* factor of the output frame (as the center (fovea) is high resolution and corners can be
|
|
* underscaled, then a reduction of the output is allowed without precision leak
|
|
* the log scale that is applied
|
|
* return automatically generated
|
|
*/
|
|
public static Retina create(Size inputSize, bool colorMode, int colorSamplingMethod, bool useRetinaLogSampling, float reductionFactor)
|
|
{
|
|
|
|
|
|
return Retina.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(bioinspired_Retina_create_12(inputSize.width, inputSize.height, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor)));
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Constructors from standardized interfaces : retreive a smart pointer to a Retina instance
|
|
*
|
|
* param inputSize the input frame size
|
|
* param colorMode the chosen processing mode : with or without color processing
|
|
* param colorSamplingMethod specifies which kind of color sampling will be used :
|
|
* <ul>
|
|
* <li>
|
|
* cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice
|
|
* </li>
|
|
* <li>
|
|
* cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
|
|
* </li>
|
|
* <li>
|
|
* cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling
|
|
* </li>
|
|
* </ul>
|
|
* param useRetinaLogSampling activate retina log sampling, if true, the 2 following parameters can
|
|
* be used
|
|
* factor of the output frame (as the center (fovea) is high resolution and corners can be
|
|
* underscaled, then a reduction of the output is allowed without precision leak
|
|
* the log scale that is applied
|
|
* return automatically generated
|
|
*/
|
|
public static Retina create(Size inputSize, bool colorMode, int colorSamplingMethod, bool useRetinaLogSampling)
|
|
{
|
|
|
|
|
|
return Retina.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(bioinspired_Retina_create_13(inputSize.width, inputSize.height, colorMode, colorSamplingMethod, useRetinaLogSampling)));
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Constructors from standardized interfaces : retreive a smart pointer to a Retina instance
|
|
*
|
|
* param inputSize the input frame size
|
|
* param colorMode the chosen processing mode : with or without color processing
|
|
* param colorSamplingMethod specifies which kind of color sampling will be used :
|
|
* <ul>
|
|
* <li>
|
|
* cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice
|
|
* </li>
|
|
* <li>
|
|
* cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
|
|
* </li>
|
|
* <li>
|
|
* cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling
|
|
* </li>
|
|
* </ul>
|
|
* be used
|
|
* factor of the output frame (as the center (fovea) is high resolution and corners can be
|
|
* underscaled, then a reduction of the output is allowed without precision leak
|
|
* the log scale that is applied
|
|
* return automatically generated
|
|
*/
|
|
public static Retina create(Size inputSize, bool colorMode, int colorSamplingMethod)
|
|
{
|
|
|
|
|
|
return Retina.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(bioinspired_Retina_create_14(inputSize.width, inputSize.height, colorMode, colorSamplingMethod)));
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* Constructors from standardized interfaces : retreive a smart pointer to a Retina instance
|
|
*
|
|
* param inputSize the input frame size
|
|
* param colorMode the chosen processing mode : with or without color processing
|
|
* <ul>
|
|
* <li>
|
|
* cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice
|
|
* </li>
|
|
* <li>
|
|
* cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
|
|
* </li>
|
|
* <li>
|
|
* cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling
|
|
* </li>
|
|
* </ul>
|
|
* be used
|
|
* factor of the output frame (as the center (fovea) is high resolution and corners can be
|
|
* underscaled, then a reduction of the output is allowed without precision leak
|
|
* the log scale that is applied
|
|
* return automatically generated
|
|
*/
|
|
public static Retina create(Size inputSize, bool colorMode)
|
|
{
|
|
|
|
|
|
return Retina.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(bioinspired_Retina_create_15(inputSize.width, inputSize.height, colorMode)));
|
|
|
|
|
|
}
|
|
|
|
|
|
#if (UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR
|
|
const string LIBNAME = "__Internal";
|
|
#else
|
|
const string LIBNAME = "opencvforunity";
|
|
#endif
|
|
|
|
|
|
|
|
// C++: Size cv::bioinspired::Retina::getInputSize()
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_getInputSize_10(IntPtr nativeObj, double[] retVal);
|
|
|
|
// C++: Size cv::bioinspired::Retina::getOutputSize()
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_getOutputSize_10(IntPtr nativeObj, double[] retVal);
|
|
|
|
// C++: void cv::bioinspired::Retina::setup(String retinaParameterFile = "", bool applyDefaultSetupOnFailure = true)
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setup_10(IntPtr nativeObj, string retinaParameterFile, [MarshalAs(UnmanagedType.U1)] bool applyDefaultSetupOnFailure);
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setup_11(IntPtr nativeObj, string retinaParameterFile);
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setup_12(IntPtr nativeObj);
|
|
|
|
// C++: String cv::bioinspired::Retina::printSetup()
|
|
[DllImport(LIBNAME)]
|
|
private static extern IntPtr bioinspired_Retina_printSetup_10(IntPtr nativeObj);
|
|
|
|
// C++: void cv::bioinspired::Retina::write(String fs)
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_write_10(IntPtr nativeObj, string fs);
|
|
|
|
// C++: void cv::bioinspired::Retina::setupOPLandIPLParvoChannel(bool colorMode = true, bool normaliseOutput = true, float photoreceptorsLocalAdaptationSensitivity = 0.7f, float photoreceptorsTemporalConstant = 0.5f, float photoreceptorsSpatialConstant = 0.53f, float horizontalCellsGain = 0.f, float HcellsTemporalConstant = 1.f, float HcellsSpatialConstant = 7.f, float ganglionCellsSensitivity = 0.7f)
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setupOPLandIPLParvoChannel_10(IntPtr nativeObj, [MarshalAs(UnmanagedType.U1)] bool colorMode, [MarshalAs(UnmanagedType.U1)] bool normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant, float photoreceptorsSpatialConstant, float horizontalCellsGain, float HcellsTemporalConstant, float HcellsSpatialConstant, float ganglionCellsSensitivity);
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setupOPLandIPLParvoChannel_11(IntPtr nativeObj, [MarshalAs(UnmanagedType.U1)] bool colorMode, [MarshalAs(UnmanagedType.U1)] bool normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant, float photoreceptorsSpatialConstant, float horizontalCellsGain, float HcellsTemporalConstant, float HcellsSpatialConstant);
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setupOPLandIPLParvoChannel_12(IntPtr nativeObj, [MarshalAs(UnmanagedType.U1)] bool colorMode, [MarshalAs(UnmanagedType.U1)] bool normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant, float photoreceptorsSpatialConstant, float horizontalCellsGain, float HcellsTemporalConstant);
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setupOPLandIPLParvoChannel_13(IntPtr nativeObj, [MarshalAs(UnmanagedType.U1)] bool colorMode, [MarshalAs(UnmanagedType.U1)] bool normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant, float photoreceptorsSpatialConstant, float horizontalCellsGain);
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setupOPLandIPLParvoChannel_14(IntPtr nativeObj, [MarshalAs(UnmanagedType.U1)] bool colorMode, [MarshalAs(UnmanagedType.U1)] bool normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant, float photoreceptorsSpatialConstant);
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setupOPLandIPLParvoChannel_15(IntPtr nativeObj, [MarshalAs(UnmanagedType.U1)] bool colorMode, [MarshalAs(UnmanagedType.U1)] bool normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant);
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setupOPLandIPLParvoChannel_16(IntPtr nativeObj, [MarshalAs(UnmanagedType.U1)] bool colorMode, [MarshalAs(UnmanagedType.U1)] bool normaliseOutput, float photoreceptorsLocalAdaptationSensitivity);
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setupOPLandIPLParvoChannel_17(IntPtr nativeObj, [MarshalAs(UnmanagedType.U1)] bool colorMode, [MarshalAs(UnmanagedType.U1)] bool normaliseOutput);
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setupOPLandIPLParvoChannel_18(IntPtr nativeObj, [MarshalAs(UnmanagedType.U1)] bool colorMode);
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setupOPLandIPLParvoChannel_19(IntPtr nativeObj);
|
|
|
|
// C++: void cv::bioinspired::Retina::setupIPLMagnoChannel(bool normaliseOutput = true, float parasolCells_beta = 0.f, float parasolCells_tau = 0.f, float parasolCells_k = 7.f, float amacrinCellsTemporalCutFrequency = 1.2f, float V0CompressionParameter = 0.95f, float localAdaptintegration_tau = 0.f, float localAdaptintegration_k = 7.f)
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setupIPLMagnoChannel_10(IntPtr nativeObj, [MarshalAs(UnmanagedType.U1)] bool normaliseOutput, float parasolCells_beta, float parasolCells_tau, float parasolCells_k, float amacrinCellsTemporalCutFrequency, float V0CompressionParameter, float localAdaptintegration_tau, float localAdaptintegration_k);
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setupIPLMagnoChannel_11(IntPtr nativeObj, [MarshalAs(UnmanagedType.U1)] bool normaliseOutput, float parasolCells_beta, float parasolCells_tau, float parasolCells_k, float amacrinCellsTemporalCutFrequency, float V0CompressionParameter, float localAdaptintegration_tau);
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setupIPLMagnoChannel_12(IntPtr nativeObj, [MarshalAs(UnmanagedType.U1)] bool normaliseOutput, float parasolCells_beta, float parasolCells_tau, float parasolCells_k, float amacrinCellsTemporalCutFrequency, float V0CompressionParameter);
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setupIPLMagnoChannel_13(IntPtr nativeObj, [MarshalAs(UnmanagedType.U1)] bool normaliseOutput, float parasolCells_beta, float parasolCells_tau, float parasolCells_k, float amacrinCellsTemporalCutFrequency);
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setupIPLMagnoChannel_14(IntPtr nativeObj, [MarshalAs(UnmanagedType.U1)] bool normaliseOutput, float parasolCells_beta, float parasolCells_tau, float parasolCells_k);
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setupIPLMagnoChannel_15(IntPtr nativeObj, [MarshalAs(UnmanagedType.U1)] bool normaliseOutput, float parasolCells_beta, float parasolCells_tau);
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setupIPLMagnoChannel_16(IntPtr nativeObj, [MarshalAs(UnmanagedType.U1)] bool normaliseOutput, float parasolCells_beta);
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setupIPLMagnoChannel_17(IntPtr nativeObj, [MarshalAs(UnmanagedType.U1)] bool normaliseOutput);
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setupIPLMagnoChannel_18(IntPtr nativeObj);
|
|
|
|
// C++: void cv::bioinspired::Retina::run(Mat inputImage)
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_run_10(IntPtr nativeObj, IntPtr inputImage_nativeObj);
|
|
|
|
// C++: void cv::bioinspired::Retina::applyFastToneMapping(Mat inputImage, Mat& outputToneMappedImage)
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_applyFastToneMapping_10(IntPtr nativeObj, IntPtr inputImage_nativeObj, IntPtr outputToneMappedImage_nativeObj);
|
|
|
|
// C++: void cv::bioinspired::Retina::getParvo(Mat& retinaOutput_parvo)
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_getParvo_10(IntPtr nativeObj, IntPtr retinaOutput_parvo_nativeObj);
|
|
|
|
// C++: void cv::bioinspired::Retina::getParvoRAW(Mat& retinaOutput_parvo)
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_getParvoRAW_10(IntPtr nativeObj, IntPtr retinaOutput_parvo_nativeObj);
|
|
|
|
// C++: void cv::bioinspired::Retina::getMagno(Mat& retinaOutput_magno)
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_getMagno_10(IntPtr nativeObj, IntPtr retinaOutput_magno_nativeObj);
|
|
|
|
// C++: void cv::bioinspired::Retina::getMagnoRAW(Mat& retinaOutput_magno)
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_getMagnoRAW_10(IntPtr nativeObj, IntPtr retinaOutput_magno_nativeObj);
|
|
|
|
// C++: Mat cv::bioinspired::Retina::getMagnoRAW()
|
|
[DllImport(LIBNAME)]
|
|
private static extern IntPtr bioinspired_Retina_getMagnoRAW_11(IntPtr nativeObj);
|
|
|
|
// C++: Mat cv::bioinspired::Retina::getParvoRAW()
|
|
[DllImport(LIBNAME)]
|
|
private static extern IntPtr bioinspired_Retina_getParvoRAW_11(IntPtr nativeObj);
|
|
|
|
// C++: void cv::bioinspired::Retina::setColorSaturation(bool saturateColors = true, float colorSaturationValue = 4.0f)
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setColorSaturation_10(IntPtr nativeObj, [MarshalAs(UnmanagedType.U1)] bool saturateColors, float colorSaturationValue);
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setColorSaturation_11(IntPtr nativeObj, [MarshalAs(UnmanagedType.U1)] bool saturateColors);
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_setColorSaturation_12(IntPtr nativeObj);
|
|
|
|
// C++: void cv::bioinspired::Retina::clearBuffers()
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_clearBuffers_10(IntPtr nativeObj);
|
|
|
|
// C++: void cv::bioinspired::Retina::activateMovingContoursProcessing(bool activate)
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_activateMovingContoursProcessing_10(IntPtr nativeObj, [MarshalAs(UnmanagedType.U1)] bool activate);
|
|
|
|
// C++: void cv::bioinspired::Retina::activateContoursProcessing(bool activate)
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_activateContoursProcessing_10(IntPtr nativeObj, [MarshalAs(UnmanagedType.U1)] bool activate);
|
|
|
|
// C++: static Ptr_Retina cv::bioinspired::Retina::create(Size inputSize)
|
|
[DllImport(LIBNAME)]
|
|
private static extern IntPtr bioinspired_Retina_create_10(double inputSize_width, double inputSize_height);
|
|
|
|
// C++: static Ptr_Retina cv::bioinspired::Retina::create(Size inputSize, bool colorMode, int colorSamplingMethod = RETINA_COLOR_BAYER, bool useRetinaLogSampling = false, float reductionFactor = 1.0f, float samplingStrength = 10.0f)
|
|
[DllImport(LIBNAME)]
|
|
private static extern IntPtr bioinspired_Retina_create_11(double inputSize_width, double inputSize_height, [MarshalAs(UnmanagedType.U1)] bool colorMode, int colorSamplingMethod, [MarshalAs(UnmanagedType.U1)] bool useRetinaLogSampling, float reductionFactor, float samplingStrength);
|
|
[DllImport(LIBNAME)]
|
|
private static extern IntPtr bioinspired_Retina_create_12(double inputSize_width, double inputSize_height, [MarshalAs(UnmanagedType.U1)] bool colorMode, int colorSamplingMethod, [MarshalAs(UnmanagedType.U1)] bool useRetinaLogSampling, float reductionFactor);
|
|
[DllImport(LIBNAME)]
|
|
private static extern IntPtr bioinspired_Retina_create_13(double inputSize_width, double inputSize_height, [MarshalAs(UnmanagedType.U1)] bool colorMode, int colorSamplingMethod, [MarshalAs(UnmanagedType.U1)] bool useRetinaLogSampling);
|
|
[DllImport(LIBNAME)]
|
|
private static extern IntPtr bioinspired_Retina_create_14(double inputSize_width, double inputSize_height, [MarshalAs(UnmanagedType.U1)] bool colorMode, int colorSamplingMethod);
|
|
[DllImport(LIBNAME)]
|
|
private static extern IntPtr bioinspired_Retina_create_15(double inputSize_width, double inputSize_height, [MarshalAs(UnmanagedType.U1)] bool colorMode);
|
|
|
|
// native support for java finalize()
|
|
[DllImport(LIBNAME)]
|
|
private static extern void bioinspired_Retina_delete(IntPtr nativeObj);
|
|
|
|
}
|
|
}
|