Health/Assets/OpenCVForUnity/Plugins/iOS/opencv2.framework/Headers/TextRecognitionModel.h

171 lines
5.3 KiB
Objective-C

//
// This file is auto-generated. Please don't modify it!
//
#pragma once
#ifdef __cplusplus
//#import "opencv.hpp"
#import "opencv2/dnn.hpp"
#import "opencv2/dnn/dnn.hpp"
#else
#define CV_EXPORTS
#endif
#import <Foundation/Foundation.h>
#import "Model.h"
@class Mat;
@class Net;
NS_ASSUME_NONNULL_BEGIN
// C++: class TextRecognitionModel
/**
* This class represents high-level API for text recognition networks.
*
* TextRecognitionModel allows to set params for preprocessing input image.
* TextRecognitionModel creates net from file with trained weights and config,
* sets preprocessing input, runs forward pass and return recognition result.
* For TextRecognitionModel, CRNN-CTC is supported.
*
* Member of `Dnn`
*/
CV_EXPORTS @interface TextRecognitionModel : Model
#ifdef __cplusplus
@property(readonly)cv::Ptr<cv::dnn::TextRecognitionModel> nativePtrTextRecognitionModel;
#endif
#ifdef __cplusplus
- (instancetype)initWithNativePtr:(cv::Ptr<cv::dnn::TextRecognitionModel>)nativePtr;
+ (instancetype)fromNative:(cv::Ptr<cv::dnn::TextRecognitionModel>)nativePtr;
#endif
#pragma mark - Methods
//
// cv::dnn::TextRecognitionModel::TextRecognitionModel(Net network)
//
/**
* Create Text Recognition model from deep learning network
* Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method
* @param network Net object
*/
- (instancetype)initWithNetwork:(Net*)network;
//
// cv::dnn::TextRecognitionModel::TextRecognitionModel(string model, string config = "")
//
/**
* Create text recognition model from network represented in one of the supported formats
* Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method
* @param model Binary file contains trained weights
* @param config Text file contains network configuration
*/
- (instancetype)initWithModel:(NSString*)model config:(NSString*)config;
/**
* Create text recognition model from network represented in one of the supported formats
* Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method
* @param model Binary file contains trained weights
*/
- (instancetype)initWithModel:(NSString*)model;
//
// TextRecognitionModel cv::dnn::TextRecognitionModel::setDecodeType(string decodeType)
//
/**
* Set the decoding method of translating the network output into string
* @param decodeType The decoding method of translating the network output into string, currently supported type:
* - `"CTC-greedy"` greedy decoding for the output of CTC-based methods
* - `"CTC-prefix-beam-search"` Prefix beam search decoding for the output of CTC-based methods
*/
- (TextRecognitionModel*)setDecodeType:(NSString*)decodeType NS_SWIFT_NAME(setDecodeType(decodeType:));
//
// string cv::dnn::TextRecognitionModel::getDecodeType()
//
/**
* Get the decoding method
* @return the decoding method
*/
- (NSString*)getDecodeType NS_SWIFT_NAME(getDecodeType());
//
// TextRecognitionModel cv::dnn::TextRecognitionModel::setDecodeOptsCTCPrefixBeamSearch(int beamSize, int vocPruneSize = 0)
//
/**
* Set the decoding method options for `"CTC-prefix-beam-search"` decode usage
* @param beamSize Beam size for search
* @param vocPruneSize Parameter to optimize big vocabulary search,
* only take top @p vocPruneSize tokens in each search step, @p vocPruneSize <= 0 stands for disable this prune.
*/
- (TextRecognitionModel*)setDecodeOptsCTCPrefixBeamSearch:(int)beamSize vocPruneSize:(int)vocPruneSize NS_SWIFT_NAME(setDecodeOptsCTCPrefixBeamSearch(beamSize:vocPruneSize:));
/**
* Set the decoding method options for `"CTC-prefix-beam-search"` decode usage
* @param beamSize Beam size for search
* only take top @p vocPruneSize tokens in each search step, @p vocPruneSize <= 0 stands for disable this prune.
*/
- (TextRecognitionModel*)setDecodeOptsCTCPrefixBeamSearch:(int)beamSize NS_SWIFT_NAME(setDecodeOptsCTCPrefixBeamSearch(beamSize:));
//
// TextRecognitionModel cv::dnn::TextRecognitionModel::setVocabulary(vector_string vocabulary)
//
/**
* Set the vocabulary for recognition.
* @param vocabulary the associated vocabulary of the network.
*/
- (TextRecognitionModel*)setVocabulary:(NSArray<NSString*>*)vocabulary NS_SWIFT_NAME(setVocabulary(vocabulary:));
//
// vector_string cv::dnn::TextRecognitionModel::getVocabulary()
//
/**
* Get the vocabulary for recognition.
* @return vocabulary the associated vocabulary
*/
- (NSArray<NSString*>*)getVocabulary NS_SWIFT_NAME(getVocabulary());
//
// string cv::dnn::TextRecognitionModel::recognize(Mat frame)
//
/**
* Given the @p input frame, create input blob, run net and return recognition result
* @param frame The input image
* @return The text recognition result
*/
- (NSString*)recognize:(Mat*)frame NS_SWIFT_NAME(recognize(frame:));
//
// void cv::dnn::TextRecognitionModel::recognize(Mat frame, vector_Mat roiRects, vector_string& results)
//
/**
* Given the @p input frame, create input blob, run net and return recognition result
* @param frame The input image
* @param roiRects List of text detection regions of interest (cv::Rect, CV_32SC4). ROIs is be cropped as the network inputs
* @param results A set of text recognition results.
*/
- (void)recognize:(Mat*)frame roiRects:(NSArray<Mat*>*)roiRects results:(NSMutableArray<NSString*>*)results NS_SWIFT_NAME(recognize(frame:roiRects:results:));
@end
NS_ASSUME_NONNULL_END