Health/Assets/OpenCVForUnity/Plugins/iOS/opencv2.framework/Headers/DTrees.h

268 lines
5.7 KiB
Objective-C

//
// This file is auto-generated. Please don't modify it!
//
#pragma once
#ifdef __cplusplus
//#import "opencv.hpp"
#import "opencv2/ml.hpp"
#else
#define CV_EXPORTS
#endif
#import <Foundation/Foundation.h>
#import "StatModel.h"
@class Mat;
// C++: enum DTreeFlags (cv.ml.DTrees.Flags)
typedef NS_ENUM(int, DTreeFlags) {
DTrees_PREDICT_AUTO NS_SWIFT_NAME(PREDICT_AUTO) = 0,
DTrees_PREDICT_SUM NS_SWIFT_NAME(PREDICT_SUM) = (1<<8),
DTrees_PREDICT_MAX_VOTE NS_SWIFT_NAME(PREDICT_MAX_VOTE) = (2<<8),
DTrees_PREDICT_MASK NS_SWIFT_NAME(PREDICT_MASK) = (3<<8)
};
NS_ASSUME_NONNULL_BEGIN
// C++: class DTrees
/**
* The class represents a single decision tree or a collection of decision trees.
*
* The current public interface of the class allows user to train only a single decision tree, however
* the class is capable of storing multiple decision trees and using them for prediction (by summing
* responses or using a voting schemes), and the derived from DTrees classes (such as RTrees and Boost)
* use this capability to implement decision tree ensembles.
*
* @see REF: ml_intro_trees
*
* Member of `Ml`
*/
CV_EXPORTS @interface DTrees : StatModel
#ifdef __cplusplus
@property(readonly)cv::Ptr<cv::ml::DTrees> nativePtrDTrees;
#endif
#ifdef __cplusplus
- (instancetype)initWithNativePtr:(cv::Ptr<cv::ml::DTrees>)nativePtr;
+ (instancetype)fromNative:(cv::Ptr<cv::ml::DTrees>)nativePtr;
#endif
#pragma mark - Methods
//
// int cv::ml::DTrees::getMaxCategories()
//
/**
* @see `-setMaxCategories:`
*/
- (int)getMaxCategories NS_SWIFT_NAME(getMaxCategories());
//
// void cv::ml::DTrees::setMaxCategories(int val)
//
/**
* getMaxCategories @see `-getMaxCategories:`
*/
- (void)setMaxCategories:(int)val NS_SWIFT_NAME(setMaxCategories(val:));
//
// int cv::ml::DTrees::getMaxDepth()
//
/**
* @see `-setMaxDepth:`
*/
- (int)getMaxDepth NS_SWIFT_NAME(getMaxDepth());
//
// void cv::ml::DTrees::setMaxDepth(int val)
//
/**
* getMaxDepth @see `-getMaxDepth:`
*/
- (void)setMaxDepth:(int)val NS_SWIFT_NAME(setMaxDepth(val:));
//
// int cv::ml::DTrees::getMinSampleCount()
//
/**
* @see `-setMinSampleCount:`
*/
- (int)getMinSampleCount NS_SWIFT_NAME(getMinSampleCount());
//
// void cv::ml::DTrees::setMinSampleCount(int val)
//
/**
* getMinSampleCount @see `-getMinSampleCount:`
*/
- (void)setMinSampleCount:(int)val NS_SWIFT_NAME(setMinSampleCount(val:));
//
// int cv::ml::DTrees::getCVFolds()
//
/**
* @see `-setCVFolds:`
*/
- (int)getCVFolds NS_SWIFT_NAME(getCVFolds());
//
// void cv::ml::DTrees::setCVFolds(int val)
//
/**
* getCVFolds @see `-getCVFolds:`
*/
- (void)setCVFolds:(int)val NS_SWIFT_NAME(setCVFolds(val:));
//
// bool cv::ml::DTrees::getUseSurrogates()
//
/**
* @see `-setUseSurrogates:`
*/
- (BOOL)getUseSurrogates NS_SWIFT_NAME(getUseSurrogates());
//
// void cv::ml::DTrees::setUseSurrogates(bool val)
//
/**
* getUseSurrogates @see `-getUseSurrogates:`
*/
- (void)setUseSurrogates:(BOOL)val NS_SWIFT_NAME(setUseSurrogates(val:));
//
// bool cv::ml::DTrees::getUse1SERule()
//
/**
* @see `-setUse1SERule:`
*/
- (BOOL)getUse1SERule NS_SWIFT_NAME(getUse1SERule());
//
// void cv::ml::DTrees::setUse1SERule(bool val)
//
/**
* getUse1SERule @see `-getUse1SERule:`
*/
- (void)setUse1SERule:(BOOL)val NS_SWIFT_NAME(setUse1SERule(val:));
//
// bool cv::ml::DTrees::getTruncatePrunedTree()
//
/**
* @see `-setTruncatePrunedTree:`
*/
- (BOOL)getTruncatePrunedTree NS_SWIFT_NAME(getTruncatePrunedTree());
//
// void cv::ml::DTrees::setTruncatePrunedTree(bool val)
//
/**
* getTruncatePrunedTree @see `-getTruncatePrunedTree:`
*/
- (void)setTruncatePrunedTree:(BOOL)val NS_SWIFT_NAME(setTruncatePrunedTree(val:));
//
// float cv::ml::DTrees::getRegressionAccuracy()
//
/**
* @see `-setRegressionAccuracy:`
*/
- (float)getRegressionAccuracy NS_SWIFT_NAME(getRegressionAccuracy());
//
// void cv::ml::DTrees::setRegressionAccuracy(float val)
//
/**
* getRegressionAccuracy @see `-getRegressionAccuracy:`
*/
- (void)setRegressionAccuracy:(float)val NS_SWIFT_NAME(setRegressionAccuracy(val:));
//
// Mat cv::ml::DTrees::getPriors()
//
/**
* @see `-setPriors:`
*/
- (Mat*)getPriors NS_SWIFT_NAME(getPriors());
//
// void cv::ml::DTrees::setPriors(Mat val)
//
/**
* getPriors @see `-getPriors:`
*/
- (void)setPriors:(Mat*)val NS_SWIFT_NAME(setPriors(val:));
//
// static Ptr_DTrees cv::ml::DTrees::create()
//
/**
* Creates the empty model
*
* The static method creates empty decision tree with the specified parameters. It should be then
* trained using train method (see StatModel::train). Alternatively, you can load the model from
* file using Algorithm::load\<DTrees\>(filename).
*/
+ (DTrees*)create NS_SWIFT_NAME(create());
//
// static Ptr_DTrees cv::ml::DTrees::load(String filepath, String nodeName = String())
//
/**
* Loads and creates a serialized DTrees from a file
*
* Use DTree::save to serialize and store an DTree to disk.
* Load the DTree from this file again, by calling this function with the path to the file.
* Optionally specify the node for the file containing the classifier
*
* @param filepath path to serialized DTree
* @param nodeName name of node containing the classifier
*/
+ (DTrees*)load:(NSString*)filepath nodeName:(NSString*)nodeName NS_SWIFT_NAME(load(filepath:nodeName:));
/**
* Loads and creates a serialized DTrees from a file
*
* Use DTree::save to serialize and store an DTree to disk.
* Load the DTree from this file again, by calling this function with the path to the file.
* Optionally specify the node for the file containing the classifier
*
* @param filepath path to serialized DTree
*/
+ (DTrees*)load:(NSString*)filepath NS_SWIFT_NAME(load(filepath:));
@end
NS_ASSUME_NONNULL_END