Health/Assets/OpenCVForUnity/Plugins/iOS/opencv2.framework/Headers/ClassificationModel.h

117 lines
3.1 KiB
Objective-C

//
// This file is auto-generated. Please don't modify it!
//
#pragma once
#ifdef __cplusplus
//#import "opencv.hpp"
#import "opencv2/dnn.hpp"
#import "opencv2/dnn/dnn.hpp"
#else
#define CV_EXPORTS
#endif
#import <Foundation/Foundation.h>
#import "Model.h"
@class Mat;
@class Net;
NS_ASSUME_NONNULL_BEGIN
// C++: class ClassificationModel
/**
* This class represents high-level API for classification models.
*
* ClassificationModel allows to set params for preprocessing input image.
* ClassificationModel creates net from file with trained weights and config,
* sets preprocessing input, runs forward pass and return top-1 prediction.
*
* Member of `Dnn`
*/
CV_EXPORTS @interface ClassificationModel : Model
#ifdef __cplusplus
@property(readonly)cv::Ptr<cv::dnn::ClassificationModel> nativePtrClassificationModel;
#endif
#ifdef __cplusplus
- (instancetype)initWithNativePtr:(cv::Ptr<cv::dnn::ClassificationModel>)nativePtr;
+ (instancetype)fromNative:(cv::Ptr<cv::dnn::ClassificationModel>)nativePtr;
#endif
#pragma mark - Methods
//
// cv::dnn::ClassificationModel::ClassificationModel(String model, String config = "")
//
/**
* Create classification model from network represented in one of the supported formats.
* An order of @p model and @p config arguments does not matter.
* @param model Binary file contains trained weights.
* @param config Text file contains network configuration.
*/
- (instancetype)initWithModel:(NSString*)model config:(NSString*)config;
/**
* Create classification model from network represented in one of the supported formats.
* An order of @p model and @p config arguments does not matter.
* @param model Binary file contains trained weights.
*/
- (instancetype)initWithModel:(NSString*)model;
//
// cv::dnn::ClassificationModel::ClassificationModel(Net network)
//
/**
* Create model from deep learning network.
* @param network Net object.
*/
- (instancetype)initWithNetwork:(Net*)network;
//
// ClassificationModel cv::dnn::ClassificationModel::setEnableSoftmaxPostProcessing(bool enable)
//
/**
* Set enable/disable softmax post processing option.
*
* If this option is true, softmax is applied after forward inference within the classify() function
* to convert the confidences range to [0.0-1.0].
* This function allows you to toggle this behavior.
* Please turn true when not contain softmax layer in model.
* @param enable Set enable softmax post processing within the classify() function.
*/
- (ClassificationModel*)setEnableSoftmaxPostProcessing:(BOOL)enable NS_SWIFT_NAME(setEnableSoftmaxPostProcessing(enable:));
//
// bool cv::dnn::ClassificationModel::getEnableSoftmaxPostProcessing()
//
/**
* Get enable/disable softmax post processing option.
*
* This option defaults to false, softmax post processing is not applied within the classify() function.
*/
- (BOOL)getEnableSoftmaxPostProcessing NS_SWIFT_NAME(getEnableSoftmaxPostProcessing());
//
// void cv::dnn::ClassificationModel::classify(Mat frame, int& classId, float& conf)
//
- (void)classify:(Mat*)frame classId:(int*)classId conf:(float*)conf NS_SWIFT_NAME(classify(frame:classId:conf:));
@end
NS_ASSUME_NONNULL_END