using OpenCVForUnity.CoreModule; using OpenCVForUnity.DnnModule; using OpenCVForUnity.ImgprocModule; using System.Collections.Generic; using System.Text; using System; using UnityEngine; namespace Yoga { public class YOLOv7ObjectDetector { Size input_size; float conf_threshold; float nms_threshold; int topK; int backend; int target; int num_classes = 80; DetectionModel detection_model; public readonly List classNames; public readonly List palette; Mat maxSizeImg; MatOfInt classIds; MatOfFloat confidences; MatOfRect boxes; public YOLOv7ObjectDetector(string modelFilepath, string configFilepath, string classesFilepath, Size inputSize, float confThreshold = 0.25f, float nmsThreshold = 0.45f, int topK = 1000, int backend = Dnn.DNN_BACKEND_OPENCV, int target = Dnn.DNN_TARGET_CPU) { // initialize if (!string.IsNullOrEmpty(modelFilepath)) { detection_model = new DetectionModel(modelFilepath, configFilepath); detection_model.setInputParams(1.0 / 255.0, inputSize, new Scalar(0, 0, 0), true, false); detection_model.setNmsAcrossClasses(false);// Perform classwise NMS. detection_model.setPreferableBackend(this.backend); detection_model.setPreferableTarget(this.target); } if (!string.IsNullOrEmpty(classesFilepath)) { classNames = readClassNames(classesFilepath); num_classes = classNames.Count; } input_size = new Size(inputSize.width > 0 ? inputSize.width : 640, inputSize.height > 0 ? inputSize.height : 640); conf_threshold = Mathf.Clamp01(confThreshold); nms_threshold = Mathf.Clamp01(nmsThreshold); this.topK = topK; this.backend = backend; this.target = target; classIds = new MatOfInt(); confidences = new MatOfFloat(); boxes = new MatOfRect(); palette = new List(); palette.Add(new Scalar(255, 56, 56, 255)); palette.Add(new Scalar(255, 157, 151, 255)); palette.Add(new Scalar(255, 112, 31, 255)); palette.Add(new Scalar(255, 178, 29, 255)); palette.Add(new Scalar(207, 210, 49, 255)); palette.Add(new Scalar(72, 249, 10, 255)); palette.Add(new Scalar(146, 204, 23, 255)); palette.Add(new Scalar(61, 219, 134, 255)); palette.Add(new Scalar(26, 147, 52, 255)); palette.Add(new Scalar(0, 212, 187, 255)); palette.Add(new Scalar(44, 153, 168, 255)); palette.Add(new Scalar(0, 194, 255, 255)); palette.Add(new Scalar(52, 69, 147, 255)); palette.Add(new Scalar(100, 115, 255, 255)); palette.Add(new Scalar(0, 24, 236, 255)); palette.Add(new Scalar(132, 56, 255, 255)); palette.Add(new Scalar(82, 0, 133, 255)); palette.Add(new Scalar(203, 56, 255, 255)); palette.Add(new Scalar(255, 149, 200, 255)); palette.Add(new Scalar(255, 55, 199, 255)); } protected virtual Mat preprocess(Mat image) { // Add padding to make it square. int max = Mathf.Max(image.cols(), image.rows()); if (maxSizeImg == null) maxSizeImg = new Mat(max, max, image.type(), Scalar.all(114)); if (maxSizeImg.width() != max || maxSizeImg.height() != max) { maxSizeImg.create(max, max, image.type()); Imgproc.rectangle(maxSizeImg, new OpenCVForUnity.CoreModule.Rect(0, 0, maxSizeImg.width(), maxSizeImg.height()), Scalar.all(114), -1); } Mat _maxSizeImg_roi = new Mat(maxSizeImg, new OpenCVForUnity.CoreModule.Rect((max - image.cols()) / 2, (max - image.rows()) / 2, image.cols(), image.rows())); image.copyTo(_maxSizeImg_roi); return maxSizeImg;// [max, max, 3] } public virtual Mat infer(Mat image) { // cheack if (image.channels() != 3) { Debug.Log("The input image must be in BGR format."); return new Mat(); } // Preprocess Mat input_blob = preprocess(image); // Forward detection_model.detect(input_blob, classIds, confidences, boxes, conf_threshold, nms_threshold); // Postprocess int num = classIds.rows(); Mat results = new Mat(num, 6, CvType.CV_32FC1); float maxSize = Mathf.Max((float)image.size().width, (float)image.size().height); float x_shift = (maxSize - (float)image.size().width) / 2f; float y_shift = (maxSize - (float)image.size().height) / 2f; for (int i = 0; i < num; ++i) { int[] classId_arr = new int[1]; classIds.get(i, 0, classId_arr); int id = classId_arr[0]; float[] confidence_arr = new float[1]; confidences.get(i, 0, confidence_arr); float confidence = confidence_arr[0]; int[] box_arr = new int[4]; boxes.get(i, 0, box_arr); int x = box_arr[0] - (int)x_shift; int y = box_arr[1] - (int)y_shift; int w = box_arr[2]; int h = box_arr[3]; results.put(i, 0, new float[] { x, y, x + w, y + h, confidence, id }); } return results; } protected virtual Mat postprocess(Mat output_blob, Size original_shape) { return output_blob; } public virtual void visualize(Mat image, Mat results, bool print_results = false, bool isRGB = false) { if (image.IsDisposed) return; if (results.empty() || results.cols() < 6) return; for (int i = results.rows() - 1; i >= 0; --i) { float[] box = new float[4]; results.get(i, 0, box); float[] conf = new float[1]; results.get(i, 4, conf); float[] cls = new float[1]; results.get(i, 5, cls); float left = box[0]; float top = box[1]; float right = box[2]; float bottom = box[3]; int classId = (int)cls[0]; Scalar c = palette[classId % palette.Count]; Scalar color = isRGB ? c : new Scalar(c.val[2], c.val[1], c.val[0], c.val[3]); Imgproc.rectangle(image, new Point(left, top), new Point(right, bottom), color, 2); string label = String.Format("{0:0.00}", conf[0]); if (classNames != null && classNames.Count != 0) { if (classId < (int)classNames.Count) { label = classNames[classId] + " " + label; } } int[] baseLine = new int[1]; Size labelSize = Imgproc.getTextSize(label, Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, 1, baseLine); top = Mathf.Max((float)top, (float)labelSize.height); Imgproc.rectangle(image, new Point(left, top - labelSize.height), new Point(left + labelSize.width, top + baseLine[0]), color, Core.FILLED); Imgproc.putText(image, label, new Point(left, top), Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, Scalar.all(255), 1, Imgproc.LINE_AA); } // Print results if (print_results) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < results.rows(); ++i) { float[] box = new float[4]; results.get(i, 0, box); float[] conf = new float[1]; results.get(i, 4, conf); float[] cls = new float[1]; results.get(i, 5, cls); int classId = (int)cls[0]; string label = String.Format("{0:0.0000}", conf[0]); if (classNames != null && classNames.Count != 0) { if (classId < (int)classNames.Count) { label = classNames[classId] + " " + label; } } sb.AppendLine(String.Format("-----------object {0}-----------", i + 1)); sb.AppendLine(String.Format("conf: {0:0.0000}", conf[0])); sb.AppendLine(String.Format("cls: {0:0}", label)); sb.AppendLine(String.Format("box: {0:0} {1:0} {2:0} {3:0}", box[0], box[1], box[2], box[3])); } Debug.Log(sb); } } public virtual void dispose() { if (detection_model != null) detection_model.Dispose(); if (maxSizeImg != null) maxSizeImg.Dispose(); maxSizeImg = null; if (classIds != null) classIds.Dispose(); if (confidences != null) confidences.Dispose(); if (boxes != null) boxes.Dispose(); classIds = null; confidences = null; boxes = null; } protected virtual List readClassNames(string filename) { List classNames = new List(); System.IO.StreamReader cReader = null; try { cReader = new System.IO.StreamReader(filename, System.Text.Encoding.Default); while (cReader.Peek() >= 0) { string name = cReader.ReadLine(); classNames.Add(name); } } catch (System.Exception ex) { Debug.LogError(ex.Message); return null; } finally { if (cReader != null) cReader.Close(); } return classNames; } } }