#if !UNITY_WSA_10_0 using UnityEngine; using UnityEngine.SceneManagement; using System; using System.Linq; using System.Collections; using System.Collections.Generic; using OpenCVForUnity.CoreModule; using OpenCVForUnity.DnnModule; using OpenCVForUnity.ImgprocModule; using OpenCVForUnity.UnityUtils; using OpenCVForUnity.ImgcodecsModule; namespace OpenCVForUnityExample { /// /// Dnn ObjectDetection Example /// Referring to https://github.com/opencv/opencv/blob/master/samples/dnn/object_detection.cpp /// public class DnnObjectDetectionExample : MonoBehaviour { [TooltipAttribute("Path to input image.")] public string input; [TooltipAttribute("Path to a binary file of model contains trained weights. It could be a file with extensions .caffemodel (Caffe), .pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet).")] public string model; [TooltipAttribute("Path to a text file of model contains network configuration. It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet).")] public string config; [TooltipAttribute("Optional path to a text file with names of classes to label detected objects.")] public string classes; [TooltipAttribute("Optional list of classes to label detected objects.")] public List classesList; [TooltipAttribute("Confidence threshold.")] public float confThreshold = 0.5f; [TooltipAttribute("Non-maximum suppression threshold.")] public float nmsThreshold = 0.4f; [TooltipAttribute("Preprocess input image by multiplying on a scale factor.")] public float scale = 1.0f; [TooltipAttribute("Preprocess input image by subtracting mean values. Mean values should be in BGR order and delimited by spaces.")] public Scalar mean = new Scalar(0, 0, 0, 0); [TooltipAttribute("Indicate that model works with RGB input images instead BGR ones.")] public bool swapRB = false; [TooltipAttribute("Preprocess input image by resizing to a specific width.")] public int inpWidth = 320; [TooltipAttribute("Preprocess input image by resizing to a specific height.")] public int inpHeight = 320; protected List classNames; protected List outBlobNames; protected List outBlobTypes; protected string classes_filepath; protected string input_filepath; protected string config_filepath; protected string model_filepath; #if UNITY_WEBGL protected IEnumerator getFilePath_Coroutine; #endif // Use this for initialization protected virtual void Start() { #if UNITY_WEBGL getFilePath_Coroutine = GetFilePath(); StartCoroutine(getFilePath_Coroutine); #else if (!string.IsNullOrEmpty(classes)) { classes_filepath = Utils.getFilePath("OpenCVForUnity/dnn/" + classes); if (string.IsNullOrEmpty(classes_filepath)) Debug.Log("The file:" + classes + " did not exist in the folder “Assets/StreamingAssets/OpenCVForUnity/dnn”."); } if (!string.IsNullOrEmpty(input)) { input_filepath = Utils.getFilePath("OpenCVForUnity/dnn/" + input); if (string.IsNullOrEmpty(input_filepath)) Debug.Log("The file:" + input + " did not exist in the folder “Assets/StreamingAssets/OpenCVForUnity/dnn”."); } if (!string.IsNullOrEmpty(config)) { config_filepath = Utils.getFilePath("OpenCVForUnity/dnn/" + config); if (string.IsNullOrEmpty(config_filepath)) Debug.Log("The file:" + config + " did not exist in the folder “Assets/StreamingAssets/OpenCVForUnity/dnn”."); } if (!string.IsNullOrEmpty(model)) { model_filepath = Utils.getFilePath("OpenCVForUnity/dnn/" + model); if (string.IsNullOrEmpty(model_filepath)) Debug.Log("The file:" + model + " did not exist in the folder “Assets/StreamingAssets/OpenCVForUnity/dnn”."); } Run(); #endif } #if UNITY_WEBGL protected virtual IEnumerator GetFilePath() { if (!string.IsNullOrEmpty(classes)) { var getFilePathAsync_0_Coroutine = Utils.getFilePathAsync("OpenCVForUnity/dnn/" + classes, (result) => { classes_filepath = result; }); yield return getFilePathAsync_0_Coroutine; if (string.IsNullOrEmpty(classes_filepath)) Debug.Log("The file:" + classes + " did not exist in the folder “Assets/StreamingAssets/OpenCVForUnity/dnn”."); } if (!string.IsNullOrEmpty(input)) { var getFilePathAsync_1_Coroutine = Utils.getFilePathAsync("OpenCVForUnity/dnn/" + input, (result) => { input_filepath = result; }); yield return getFilePathAsync_1_Coroutine; if (string.IsNullOrEmpty(input_filepath)) Debug.Log("The file:" + input + " did not exist in the folder “Assets/StreamingAssets/OpenCVForUnity/dnn”."); } if (!string.IsNullOrEmpty(config)) { var getFilePathAsync_2_Coroutine = Utils.getFilePathAsync("OpenCVForUnity/dnn/" + config, (result) => { config_filepath = result; }); yield return getFilePathAsync_2_Coroutine; if (string.IsNullOrEmpty(config_filepath)) Debug.Log("The file:" + config + " did not exist in the folder “Assets/StreamingAssets/OpenCVForUnity/dnn”."); } if (!string.IsNullOrEmpty(model)) { var getFilePathAsync_3_Coroutine = Utils.getFilePathAsync("OpenCVForUnity/dnn/" + model, (result) => { model_filepath = result; }); yield return getFilePathAsync_3_Coroutine; if (string.IsNullOrEmpty(model_filepath)) Debug.Log("The file:" + model + " did not exist in the folder “Assets/StreamingAssets/OpenCVForUnity/dnn”."); } getFilePath_Coroutine = null; Run(); } #endif // Use this for initialization protected virtual void Run() { //if true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console. Utils.setDebugMode(true); if (!string.IsNullOrEmpty(classes)) { classNames = readClassNames(classes_filepath); if (classNames == null) { Debug.LogError(classes + " is not loaded. Please see “Assets/StreamingAssets/OpenCVForUnity/dnn/setup_dnn_module.pdf”."); } } else if (classesList.Count > 0) { classNames = classesList; } Mat img = Imgcodecs.imread(input_filepath); if (img.empty()) { Debug.LogError(input + " is not loaded. Please see “Assets/StreamingAssets/OpenCVForUnity/dnn/setup_dnn_module.pdf”."); img = new Mat(424, 640, CvType.CV_8UC3, new Scalar(0, 0, 0)); } //Adust Quad.transform.localScale. gameObject.transform.localScale = new Vector3(img.width(), img.height(), 1); Debug.Log("Screen.width " + Screen.width + " Screen.height " + Screen.height + " Screen.orientation " + Screen.orientation); float imageWidth = img.width(); float imageHeight = img.height(); float widthScale = (float)Screen.width / imageWidth; float heightScale = (float)Screen.height / imageHeight; if (widthScale < heightScale) { Camera.main.orthographicSize = (imageWidth * (float)Screen.height / (float)Screen.width) / 2; } else { Camera.main.orthographicSize = imageHeight / 2; } Net net = null; if (string.IsNullOrEmpty(model_filepath)) { Debug.LogError(model + " is not loaded. Please see “Assets/StreamingAssets/OpenCVForUnity/dnn/setup_dnn_module.pdf”."); } else { //! [Initialize network] net = Dnn.readNet(model_filepath, config_filepath); //! [Initialize network] } if (net == null) { Imgproc.putText(img, "model file is not loaded.", new Point(5, img.rows() - 30), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false); Imgproc.putText(img, "Please read console message.", new Point(5, img.rows() - 10), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255), 2, Imgproc.LINE_AA, false); } else { outBlobNames = getOutputsNames(net); //for (int i = 0; i < outBlobNames.Count; i++) //{ // Debug.Log("names [" + i + "] " + outBlobNames[i]); //} outBlobTypes = getOutputsTypes(net); //for (int i = 0; i < outBlobTypes.Count; i++) //{ // Debug.Log("types [" + i + "] " + outBlobTypes[i]); //} // Create a 4D blob from a frame. Size inpSize = new Size(inpWidth > 0 ? inpWidth : img.cols(), inpHeight > 0 ? inpHeight : img.rows()); Mat blob = Dnn.blobFromImage(img, scale, inpSize, mean, swapRB, false); // Run a model. net.setInput(blob); if (net.getLayer(0).outputNameToIndex("im_info") != -1) { // Faster-RCNN or R-FCN Imgproc.resize(img, img, inpSize); Mat imInfo = new Mat(1, 3, CvType.CV_32FC1); imInfo.put(0, 0, new float[] { (float)inpSize.height, (float)inpSize.width, 1.6f }); net.setInput(imInfo, "im_info"); } TickMeter tm = new TickMeter(); tm.start(); List outs = new List(); net.forward(outs, outBlobNames); tm.stop(); Debug.Log("Inference time, ms: " + tm.getTimeMilli()); postprocess(img, outs, net, Dnn.DNN_BACKEND_OPENCV); for (int i = 0; i < outs.Count; i++) { outs[i].Dispose(); } blob.Dispose(); net.Dispose(); } Imgproc.cvtColor(img, img, Imgproc.COLOR_BGR2RGB); Texture2D texture = new Texture2D(img.cols(), img.rows(), TextureFormat.RGBA32, false); Utils.matToTexture2D(img, texture); gameObject.GetComponent().material.mainTexture = texture; Utils.setDebugMode(false); } // Update is called once per frame protected virtual void Update() { } /// /// Raises the destroy event. /// protected virtual void OnDestroy() { #if UNITY_WEBGL if (getFilePath_Coroutine != null) { StopCoroutine(getFilePath_Coroutine); ((IDisposable)getFilePath_Coroutine).Dispose(); } #endif } /// /// Raises the back button click event. /// public void OnBackButtonClick() { SceneManager.LoadScene("OpenCVForUnityExample"); } /// /// Reads the class names. /// /// The class names. /// Filename. protected virtual List readClassNames(string filename) { List classNames = new List(); System.IO.StreamReader cReader = null; try { cReader = new System.IO.StreamReader(filename, System.Text.Encoding.Default); while (cReader.Peek() >= 0) { string name = cReader.ReadLine(); classNames.Add(name); } } catch (System.Exception ex) { Debug.LogError(ex.Message); return null; } finally { if (cReader != null) cReader.Close(); } return classNames; } /// /// Postprocess the specified frame, outs and net. /// /// Frame. /// Outs. /// Net. /// Backend. protected virtual void postprocess(Mat frame, List outs, Net net, int backend = Dnn.DNN_BACKEND_OPENCV) { MatOfInt outLayers = net.getUnconnectedOutLayers(); string outLayerType = outBlobTypes[0]; List classIdsList = new List(); List confidencesList = new List(); List boxesList = new List(); if (net.getLayer(0).outputNameToIndex("im_info") != -1) { // Faster-RCNN or R-FCN // Network produces output blob with a shape 1x1xNx7 where N is a number of // detections and an every detection is a vector of values // [batchId, classId, confidence, left, top, right, bottom] if (outs.Count == 1) { outs[0] = outs[0].reshape(1, (int)outs[0].total() / 7); //Debug.Log ("outs[i].ToString() " + outs [0].ToString ()); float[] data = new float[7]; for (int i = 0; i < outs[0].rows(); i++) { outs[0].get(i, 0, data); float confidence = data[2]; if (confidence > confThreshold) { int class_id = (int)(data[1]); float left = data[3] * frame.cols(); float top = data[4] * frame.rows(); float right = data[5] * frame.cols(); float bottom = data[6] * frame.rows(); float width = right - left + 1f; float height = bottom - top + 1f; classIdsList.Add((int)(class_id) - 1); // Skip 0th background class id. confidencesList.Add((float)confidence); boxesList.Add(new Rect2d(left, top, width, height)); } } } } else if (outLayerType == "DetectionOutput") { // Network produces output blob with a shape 1x1xNx7 where N is a number of // detections and an every detection is a vector of values // [batchId, classId, confidence, left, top, right, bottom] if (outs.Count == 1) { outs[0] = outs[0].reshape(1, (int)outs[0].total() / 7); //Debug.Log ("outs[i].ToString() " + outs [0].ToString ()); float[] data = new float[7]; for (int i = 0; i < outs[0].rows(); i++) { outs[0].get(i, 0, data); float confidence = data[2]; if (confidence > confThreshold) { int class_id = (int)(data[1]); float left = data[3] * frame.cols(); float top = data[4] * frame.rows(); float right = data[5] * frame.cols(); float bottom = data[6] * frame.rows(); float width = right - left + 1f; float height = bottom - top + 1f; classIdsList.Add((int)(class_id) - 1); // Skip 0th background class id. confidencesList.Add((float)confidence); boxesList.Add(new Rect2d(left, top, width, height)); } } } } else if (outLayerType == "Region") { for (int i = 0; i < outs.Count; ++i) { // Network produces output blob with a shape NxC where N is a number of // detected objects and C is a number of classes + 4 where the first 4 // numbers are [center_x, center_y, width, height] //Debug.Log ("outs[i].ToString() "+outs[i].ToString()); float[] positionData = new float[5]; float[] confidenceData = new float[outs[i].cols() - 5]; for (int p = 0; p < outs[i].rows(); p++) { outs[i].get(p, 0, positionData); outs[i].get(p, 5, confidenceData); int maxIdx = confidenceData.Select((val, idx) => new { V = val, I = idx }).Aggregate((max, working) => (max.V > working.V) ? max : working).I; float confidence = confidenceData[maxIdx]; if (confidence > confThreshold) { float centerX = positionData[0] * frame.cols(); float centerY = positionData[1] * frame.rows(); float width = positionData[2] * frame.cols(); float height = positionData[3] * frame.rows(); float left = centerX - width / 2; float top = centerY - height / 2; classIdsList.Add(maxIdx); confidencesList.Add((float)confidence); boxesList.Add(new Rect2d(left, top, width, height)); } } } } else { Debug.Log("Unknown output layer type: " + outLayerType); } // NMS is used inside Region layer only on DNN_BACKEND_OPENCV for another backends we need NMS in sample // or NMS is required if number of outputs > 1 if (outLayers.total() > 1 || (outLayerType == "Region" && backend != Dnn.DNN_BACKEND_OPENCV)) { Dictionary> class2indices = new Dictionary>(); for (int i = 0; i < classIdsList.Count; i++) { if (confidencesList[i] >= confThreshold) { if (!class2indices.ContainsKey(classIdsList[i])) class2indices.Add(classIdsList[i], new List()); class2indices[classIdsList[i]].Add(i); } } List nmsBoxesList = new List(); List nmsConfidencesList = new List(); List nmsClassIdsList = new List(); foreach (int key in class2indices.Keys) { List localBoxesList = new List(); List localConfidencesList = new List(); List classIndicesList = class2indices[key]; for (int i = 0; i < classIndicesList.Count; i++) { localBoxesList.Add(boxesList[classIndicesList[i]]); localConfidencesList.Add(confidencesList[classIndicesList[i]]); } using (MatOfRect2d localBoxes = new MatOfRect2d(localBoxesList.ToArray())) using (MatOfFloat localConfidences = new MatOfFloat(localConfidencesList.ToArray())) using (MatOfInt nmsIndices = new MatOfInt()) { Dnn.NMSBoxes(localBoxes, localConfidences, confThreshold, nmsThreshold, nmsIndices); for (int i = 0; i < nmsIndices.total(); i++) { int idx = (int)nmsIndices.get(i, 0)[0]; nmsBoxesList.Add(localBoxesList[idx]); nmsConfidencesList.Add(localConfidencesList[idx]); nmsClassIdsList.Add(key); } } } boxesList = nmsBoxesList; classIdsList = nmsClassIdsList; confidencesList = nmsConfidencesList; } for (int idx = 0; idx < boxesList.Count; ++idx) { Rect2d box = boxesList[idx]; drawPred(classIdsList[idx], confidencesList[idx], box.x, box.y, box.x + box.width, box.y + box.height, frame); } } /// /// Draws the pred. /// /// Class identifier. /// Conf. /// Left. /// Top. /// Right. /// Bottom. /// Frame. protected virtual void drawPred(int classId, float conf, double left, double top, double right, double bottom, Mat frame) { Imgproc.rectangle(frame, new Point(left, top), new Point(right, bottom), new Scalar(0, 255, 0, 255), 2); string label = conf.ToString(); if (classNames != null && classNames.Count != 0) { if (classId < (int)classNames.Count) { label = classNames[classId] + ": " + label; } } int[] baseLine = new int[1]; Size labelSize = Imgproc.getTextSize(label, Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, 1, baseLine); top = Mathf.Max((float)top, (float)labelSize.height); Imgproc.rectangle(frame, new Point(left, top - labelSize.height), new Point(left + labelSize.width, top + baseLine[0]), Scalar.all(255), Core.FILLED); Imgproc.putText(frame, label, new Point(left, top), Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, new Scalar(0, 0, 0, 255)); } /// /// Gets the outputs names. /// /// The outputs names. /// Net. protected virtual List getOutputsNames(Net net) { List names = new List(); MatOfInt outLayers = net.getUnconnectedOutLayers(); for (int i = 0; i < outLayers.total(); ++i) { names.Add(net.getLayer((int)outLayers.get(i, 0)[0]).get_name()); } outLayers.Dispose(); return names; } /// /// Gets the outputs types. /// /// The outputs types. /// Net. protected virtual List getOutputsTypes(Net net) { List types = new List(); MatOfInt outLayers = net.getUnconnectedOutLayers(); for (int i = 0; i < outLayers.total(); ++i) { types.Add(net.getLayer((int)outLayers.get(i, 0)[0]).get_type()); } outLayers.Dispose(); return types; } } } #endif